This material takes 1:05.

Hashing

Dictionaries

- Operations.
 - makeset, insert, delete, find

Model

- keys are integers in $M = \{1, \ldots, m\}$
- (so assume machine word size, or “unit time,” is $\log m$)
- can store in array of size M
- using power: arithmetic, indirect addressing
- compare to comparison and pointer based sorting, binary trees
- problem: space.

Hashing:

- find function h mapping M into table of size $n \ll m$
- Note some items get mapped to same place: “collision”
- use linked list etc.
- search, insert cost equals size of linked list
- goal: keep linked lists small: few collisions

Hash families:

- problem: for any hash function, some bad input (if n items, then m/n items to same bucket)
- This true even if hash is e.g. SHA1
- Solution: build family of functions, choose one that works well

Set of all functions?

- Idea: choose “function” that stores items in sorted order without collisions
- problem: to evaluate function, must examine all data
- evaluation time $\Omega(\log n)$.
• “description size” $\Omega(n \log m)$,

• Better goal: choose function that can be evaluated in constant time without looking at data (except query key)

How about a random function?

• set S of s items

• If $s = n$, balls in bins
 – $O((\log n)/(\log \log n))$ collisions w.h.p.
 – And matches that somewhere
 – but we care more about average collisions over many operations
 – $C_{ij} = 1$ if i, j collide
 – Time to find i is $\sum_j C_{ij}$
 – expected value $(n - 1)/n \leq 1$

• more generally expected search time for item (present or not): $O(s/n) = O(1)$ if $s = n$

Problem:

• n^m functions (specify one of n places for each of n items)
 – too much space to specify $(m \log n)$,
 – hard to evaluate

• for $O(1)$ search time, need to identify function in $O(1)$ time.
 – so function description must fit in $O(1)$ machine words
 – Assuming $\log m$ bit words
 – So, fixed number of cells can only distinguish $\text{poly}(m)$ functions

• This bounds size of hash family we can choose from

Our analysis:

• sloppier constants

• but more intuitive than book

2-universal family: [Carter-Wegman]

• Key insight: don’t need entirely random function

• All we care about is which pairs of items collide

• so: OK if items land pairwise independent
- pick \(p \) in range \(m, \ldots, 2m \) (not random)
- pick random \(a, b \)
- map \(x \) to \((ax + b \mod p) \mod n\)
 - pairwise independent, uniform before \(\mod n \)
 - So pairwise independent, near-uniform after \(\mod n \)
 - at most 2 “uniform buckets” to same place
- argument above holds: \(O(1) \) expected search time.
- represent with two \(O(\log m) \)-bit integers: hash family of poly size.
- \(\max \) load may be large is \(\sqrt{n} \), but who cares?
 - expected load in a bin is 1
 - so \(O(\sqrt{n}) \) with prob. \(1-1/n \) (chebyshev).
 - this bounds expected max-load
 - some item may have bad load, but unlikely to be the requested one
 - can show the max load is probably achieved for some 2-universal families

perfect hash families

Ideally, would hash with no collisions

- Explore case of fixed set of \(n \) items (read only)
- perfect hash function: no collisions
- Even fully random function of \(n \) to \(n \) has collisions

Alternative try: use more space:

- How big can \(s \) be for random \(s \) to \(n \) without collisions?
 - Expected number of collisions is \(E[\sum C_{ij}] = \binom{s}{2} (1/n) \approx s^2/2n \)
 - **Markov Inequality**: \(s = \sqrt{n} \) works with prob. \(1/2 \)
 - Nonzero probability, so, 2-universal hashes can work in quadratic space.
- Is this best possible?
 - Birthday problem: \((1 - 1/n) \cdots (1 - s/n) \approx e^{-(1/n + 2/n + \cdots + s/n)} \approx e^{-s^2/2n} \)
 - So, when \(s = \sqrt{n} \) has \(\Omega(1) \) chance of collision
 - 23 for birthdays
 - even for fully independent
Finding one
- We know one exists—how find it?
- Try till succeed
- Each time, succeed with probability 1/2
- Expected number of tries to succeed is 2
- Probability need k tries is 2^{-k}

Two level hashing for linear space
- Hash s items into $O(s)$ space 2-universally
- Build quadratic size hash table on contents of each bucket
- bound $\sum b_k^2 = \sum_k (\sum_{i \in b_k})^2 = \sum C_i + C_{ij}$
- expected value $O(s)$.
- So try till get (markov)
- Then build collision-free quadratic tables inside
- Try till get
- Polynomial time in s, Las-vegas algorithm
 - Easy: $6s$ cells
 - Hard: $s + o(s)$ cells (bit fiddling)

Define las vegas, compare to monte carlo.
Derandomization
- Probability 1/2 top-level function works
- Only m^2 top-level functions
- Try them all!
- Polynomial in m (not n), deterministic algorithm