
1 Buckets

Cherkassky, Goldberg, and Silverstein. SODA 97.
review shortest path algorithm.
In shortest paths, often have edge lengths small integers (say max C).
Observe heap behavior:

• heap min increasing (monotone property)

• max C distinct values

• (because don’t insert k + C until delete k).

Idea: lots of things have same value. Keep in buckets.
How to exploit?

• standard heaps of buckets. O(m log C) (slow) or O(m + n log C) with Fib
(messy).

• Dial’s algorithm: O(m + nC).

space?

• use array of size C + 1

• wrap around

2-level buckets.
Tries.

• depth k tree over array of size ∆

• depth k

• expansion factor ∆ = (C + 1)1/k (power of 2 simplifies)

• insert: O(k) (also find, delete-non-min, decrease-key)

• delete-min: O(k∆) = O(kC1/k) to find next element

• Shortest paths: O(km + knC1/k)

• Balance: nC1/k = m so C = (m/n)k so k = log(C)/ log(m/n)

• Runtime: m logm/n(C)

• Space: kn = n logm/n C

Problems: space and time
Idea: be lazy!

• unique array on each level active

• keep other stuff piled up in list

1



• expand to buckets when reach

• each item descends one level per touch, never ascends

• charge to insert, pay for other ops by pushing items down

• In delete, need to traverse exactly one level to find next nonempty item

• (may also do pushdowns, but those are paid for)

• space to linear

• New time analysis:

– O(k) insert

– O(C1/k) delete

– O(1) decrease key

• paths runtime: O(m + n(k + C1/k)) = O(m + n(log C)/ log log C)

• Further improvement: heap on top (HOT) queues get O(m+n(log C)1/3)
time

• Implementation experiments—good model for project

2 VEB

Van Emde Boas, “Design and Implementation of an efficient priority queue”
Math Syst. Th. 10 (1977)
Thorup, “On RAM priority queues” SODA 1996.
Idea

• idea: in bucket heaps, problem of finding next empty bucket was heap
problem. Recurse!

• b-bit words

• log b running times

• thorup paper improves to log log n

• consequence for sorting.

Algorithm.

• need constant time hash table. non-trivial complexity theory, but can
manage with randomization or slight time loss.

• queue Q on b bits is struct

– Q.min is current min, not stored recursively

2



– Array Q.low[] of
√

u queues on low order bits in bucket

– Q.high, vEB queue on high order bits of elements other than current
min in queue

• Insert x:

– if x < Q. min, swap

– now insert x in recursive structs

– expand x = (xh, xl) high and low half words

– If Q.low[xh] nonempty, then insert xl in it

– else, make new queue holding xl at Q.low[xh], and insert xh in Q.high

– note two inserts, but one to an empty queue, so constant time

• Delete-min:

– need to replace Q. min

– Look in Q.high.min. if null, queue is empty.

– else, gives first nonempty bucket xh

– Delete min from Q.low[xh] to finish finding Q.min

– If results in empty queue, Delete-min from Q.high to remove that
bucket from consideration

– Note two delete mins, but second only happens when first was con-
stant time.

3


