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ABSTRACT
We introduce the SNZI shared object, which is related to
traditional shared counters, but has weaker semantics. We
also introduce a resettable version of SNZI called SNZI-R.
We present implementations that are scalable, linearizable,
nonblocking, and fast in the absence of contention, proper-
ties that are difficult or impossible to achieve simultaneously
with the stronger semantics of traditional counters.

Our primary motivation in introducing SNZI and SNZI-R
is to use them to improve the performance and scalabil-
ity of software and hybrid transactional memory systems.
We present performance experiments showing that our im-
plementations have excellent performance characteristics for
this purpose.

Categories and Subject Descriptors
E.1 [Data Structures]

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Counters, scalability, transactional memory

1. INTRODUCTION
We introduce the Scalable NonZero Indicator, or SNZI

(pronounced “snazzy”), a shared object that supports Arrive
and Depart operations, as well as a Query operation, which
returns a boolean value indicating whether there is a surplus

of Arrive operations (i.e., whether the number of Arrive

operations exceeds the number of Depart operations). We
present linearizable [4] implementations of SNZI objects,
which are specified in Figure 1.

A SNZI object is easy to implement with a simple shared
counter, which provides Increment and Decrement opera-
tions that return the value of the counter immediately before
modifying it and a Read operation that returns the value of
the counter without modifying it. It is straightforward to
implement a shared counter by repeatedly using a common
synchronization primitive such as compare-and-swap (CAS)
to attempt to update the counter. While this approach is
simple, nonblocking, linearizable, and reasonably fast in the
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shared variable:
Surplus: integer

initially 0

bool Query()
return (Surplus > 0)

void Arrive()
Surplus ← Surplus + 1

void Depart()
Surplus ← Surplus − 1

Well-formedness condition: the number of Depart operations

invoked before any point in time is at most the number of Arrive

operations completed before that time.

Figure 1: SNZI specification.

absence of contention, it is not scalable. Severe performance
degradation occurs under heavy use, as contention for the
counter increases. Unfortunately, no known implementation
of a shared counter is nonblocking, linearizable, scalable, and
has low latency in the absence of contention—indeed, as dis-
cussed in Section 7, there are reasons to believe that such
an implementation is impossible [5].

For many applications, the full functionality of shared
counters is unnecessary; the weaker SNZI semantics is suf-
ficient. For example, SNZI objects can be used to improve
the scalability of reference-counting garbage collectors. Ref-
erence counting is a simple technique for determining when
a resource can be reclaimed because it is no longer reachable.
A garbage collector need not determine the exact number of
references to a resource; it suffices to know whether there is
any such reference. Thus, reference counters can be replaced
by SNZI objects.

We can exploit the weaker semantics of SNZI to achieve
implementations with better performance characteristics
than a counter-based implementation. For example, when
contention is high, the surplus may change much more fre-
quently than the Query result, which changes only when the
surplus changes from 0 to 1 and vice versa. Thus, a mem-
ory location read by Query may remain in cache even while
many Arrive and Depart operations complete. This makes
subsequent Query operations faster, and has other benefits
that we explain later. Moreover, because SNZI objects need
not determine the exact surplus—only whether it is zero or
nonzero—we can avoid nonscalable centralized synchroniza-
tion mechanisms such as simple CAS-based counters.

Our immediate motivation for considering SNZI objects is
to improve the performance and scalability of hybrid trans-
actional memory (HyTM) systems [1], in which transactions
can be executed either directly by hardware or by using
software. A key challenge in implementing HyTM systems
is ensuring that hardware transactions detect conflicts with
software transactions.
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Suppose software transactions perform Arrive before be-
ginning and Depart after completing. A hardware transac-
tion that calls Query and gets false can infer that there are
no software transactions in progress and can thus avoid the
significant overhead of detecting conflicts with them for each
transactional load or store. This is safe because, if a software
transaction subsequently begins and completes its Arrive

operation before the hardware transaction completes, the
Arrive will cause a memory location previously read by the
hardware transaction’s Query operation to change, which
will cause the hardware transaction to abort.

Furthermore, a good SNZI implementation can avoid mod-
ifying the memory location(s) read by the Query operation
except when the surplus changes from 0 to 1 or from 1 to
0. Thus, if a hardware transaction’s call to Query indicates
that the surplus is nonzero (and thus that it must check for
conflicts with software transactions on each load and store),
then subsequent Arrive and Depart operations by software
transactions need not always cause the hardware transac-
tion to fail. In contrast, if we used a simple counter instead
of a SNZI object, such operations would cause the counter
to change, which would cause the hardware transaction to
abort, often unnecessarily.

SNZI objects can also be used to improve “semivisible”
read-sharing mechanisms [6], which allow a transaction that
intends to write to a location to determine whether any
transactions are reading the location. For this purpose, we
do not need to know which transactions are reading nor
how many there are, just whether the number of readers
is nonzero. If software transactions perform Arrive before
reading from the location and Depart when they end, a
transaction that wants to modify the location can detect
conflicts with readers by performing Query.

In addition to improving scalability under heavy read shar-
ing by software transactions, using a SNZI object instead
of a simple counter can again avoid unnecessarily aborting
hardware transactions. In particular, a hardware transac-
tion that wishes to read a location can query its associated
SNZI object, and if it indicates that there is a nonzero num-
ber of software readers, it is safe for the hardware transac-
tion to read share the location. This remains safe if another
software transaction arrives, but this arrival would always
cause the hardware transaction to fail if a simple counter
were used to record the number of readers.

In this application of SNZI objects, if a location is being
read shared by some transactions, another transaction can
modify this location (thereby invalidating the reading trans-
actions). After the location has been modified, we would like
to be able to start read sharing the location again, without
waiting for all of the previous readers to depart. To sup-
port this, we add a Reset operation and modify the Query

operation to determine whether there is any reader that
has arrived since the previous reset (if any) and not yet de-
parted. The resulting object, SNZI-R (pronounced “snazz-
ier”), is specified in Figure 2. Arrive and Depart operations
pertain to a particular epoch, and the Query operation de-
termines whether the number of Arrive operations exceeds
the number of Depart operations for the current epoch. The
Reset operation causes a transition to a new specified epoch,
provided that this epoch is larger than the current epoch.
Epochs are assumed to be totally ordered.

We describe novel, practical implementations for both
SNZI and SNZI-R that exploit their weaker semantics. These

type SNZI R type =
record

Epoch: integer
Surplus: integer

shared variable:
S : SNZI R type

initially 〈0, 0〉

〈bool,integer〉 Query()
return
〈S .Surplus > 0,

S .Epoch〉

integer Arrive()
S .Surplus ← S .Surplus + 1
return S .Epoch

void Depart(e: integer)
if S .Epoch = e then

S .Surplus ← S .Surplus − 1

bool Reset(e: integer)
if e > S .Epoch then

S = 〈e, 0〉
return true

else
return false

Well-formedness condition: for any epoch e, the number of

Depart(e) operations invoked before any point in time is at most

the number of Arrive operations that completed before that time

and returned e.

Figure 2: SNZI-R specification.

algorithms are nonblocking, linearizable, scalable, and have
low latency in the absence of contention. We also present ex-
perimental results showing that they are substantially more
scalable and efficient than the best practical alternative,
namely simple CAS-based counters.

We have designed our implementations carefully to en-
sure that they are useful in our motivating applications. In
particular, our Query operations consist of a single Read of
a single bit (together with an epoch in the SNZI-R case).
This ensures that the SNZI object can be queried very fast
and that the information read by Query can be stored in a
memory word already being used by an application, which
may have only a small number of unused bits available.

The remainder of this paper is organized as follows: In
Section 2, we briefly present some previous work relevant
to the design of a SNZI implementation. Our SNZI imple-
mentation is presented in Section 3; an overview of its proof
of correctness appears in Section 4. In Section 5, we ex-
plain how to augment our SNZI implementation to achieve a
SNZI-R implementation. In Section 6, we present some pre-
liminary performance results and explain why they demon-
strate excellent performance characteristics for our motivat-
ing applications. We discuss some variations and future re-
search directions in Section 7, and conclude in Section 8.

2. RELATED WORK
In this section, we briefly describe some related work that

explains some of the intuition and motivation behind our
algorithms.

Goodman et al. [3] proposed combining trees for imple-
menting scalable counters. Operations start at a leaf and
proceed towards the root, “combining” operations on the
way to reduce contention on the counter at the root, which
is crucial for scalability. The scalability of our algorithms
is based on similar “filtering” mechanisms in which coordi-
nation at lower levels of a hierarchy reduces contention at
higher levels. However, combining trees are blocking, need
to know the maximum number of processes in advance, and
have logarithmic best-case time complexity; our algorithms
have none of these disadvantages.

Combining funnels, due to Shavit and Zemach [10], aim
to address some of these problems by allowing processes
to start anywhere in the tree, and adaptively changing the
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depth and breadth of the part of the tree that is in use ac-
cording to perceived load. Thus, when load is low, processes
can go straight to the root of the tree, overcoming the log-
arithmic best-case time complexity of combining trees, as
well as the need to configure the data structure based on
the maximum number of processes. Our algorithm simi-
larly allows processes to choose where to start in a hier-
archy, thus achieving good throughput under high load and
good latency under low load. However, like combining trees,
combining funnels are blocking. On the other hand, our al-
gorithms exploit the weaker semantics of SNZI objects to
eliminate this problem: A process that relies on another to
indicate its presence at the root of the hierarchy is not re-

quired to wait for that process, because for SNZI, it does
not matter if the presence of both or only one is reflected at
the root.

3. SNZI ALGORITHM
Our solution is organized as a rooted tree of SNZI objects,

in which a child is implemented using its parent. That is,
an operation on a child may invoke operations on its par-
ent. We say that a parent’s surplus due to a child is the
difference between the numbers of Arrive and Depart oper-
ations invoked on the parent (henceforth parent.Arrive and
parent.Depart) by operations of that child. Our implemen-
tation guarantees the following properties:

1. A parent’s surplus due to a child is never negative.

2. A parent has a surplus due to a child if and only if the
child has a surplus.

Given these properties, it is easy to see that the root of
the tree has a surplus if any node in the tree does. Thus,
considering the tree as a single SNZI object, processes can
invoke Arrive and Depart on any node in the tree, and
Query directly on the root (so the complexity of Query is
independent of the depth of the tree).

To reduce contention, we attempt to minimize the num-
ber of operations a child invokes on its parent. Thus, a
child acts as a filter for its parent, and the tree structure
greatly reduces contention for the root node, so we can use
a nonscalable SNZI solution at the root without jeopardizing
scalability overall.

Because some of our motivating applications require the
indicator bit to be stored in the same word as application-
specific information, at the root of the tree we use a special
SNZI object that separates out the indicator bit.

Note that we do not rely on any special properties of the
tree (other than rootedness); it need not have a fixed arity
or depth, and processes can begin their Arrive operations
at any node in the tree (as long as the corresponding Depart

begins at the same node). This flexibility is useful because
the optimal shape for the tree can depend heavily on details
of both the application and the architecture.

We first show how to implement a child node using its
parent, and then present the SNZI implementation we use
at the root. Our implementations use registers that support
Read and CAS1 operations.

1CAS(a, e, n) atomically compares the contents of address a
to “expected value” e. If they are equal, it stores “new
value” n to address a and returns true; otherwise it returns
false and does not modify memory.

parent

increment X

p X surplus

0

1

1

2

0

0

1

0

increment X

decrement X

parent.Depart

decrement X

parent.Arrive

q

A

D

A

D

The two boxed columns in the middle indicate the values
of the shared variables through time (time proceeds down-
ward). Downward-pointing arrows represent processes,
which invoke Arrive and Depart operations indicated by
ovals labeled A and D respectively. Within the ovals, labeled
points indicate access to shared variables, and the dotted
arrows from these points indicate the value accessed.

Figure 3: Illustration of näıve algorithm

parent

increment X

p X surplus

0

q

01

2
increment X

A

A

Process q increments X after process p, but before p invokes
parent.Arrive. Because X = 1 when q increments it, q

returns immediately without invoking parent.Arrive. At
this point, the child has a surplus (because q has completed
its Arrive) but the parent does not, violating property 2.

Figure 4: Problem with näıve algorithm

3.1 Hierarchical algorithm
To motivate our algorithm, we first consider a simple but

flawed algorithm, illustrated in Figure 3, for implementing
SNZI using a parent SNZI object. The child maintains a
counter—call it X—which is incremented by Arrive and
decremented by Depart. An Arrive that changes X from 0
to 1 invokes parent.Arrive; a Depart that changes X from
1 to 0 invokes parent.Depart. Other Arrive and Depart

operations complete without invoking any operation on the
parent. This algorithm violates property 2 above, as illus-
trated in Figure 4.

The basic idea in our algorithm is to introduce an inter-
mediate value 1

2
when incrementing X from 0 to 1. Any

process seeing X = 1

2
must first “help” the process that set

X to 1

2
by invoking parent.Arrive and then attempting to

change X to 1 before retrying its own operation. Thus, be-
fore any of the Arrive operations on the child completes, at
least one of them has completed a parent.Arrive.

Because helping may cause parent.Arrive to be invoked
several times for a single transition of X from 0 to 1, pro-
cesses that invoke parent.Arrive but fail the subsequent at-
tempt to change X from 1

2
to 1 invoke a “compensating”

parent.Depart. Thus, there is a compensating parent.Depart

for all but one parent.Arrive. The remaining parent.Arrive

is matched by a parent.Depart that is invoked by a process
that changes X from 1 to 0 (in a Depart operation).

In the algorithm as described thus far, the surplus of
the parent can “flicker” between 0 and 1 while an Arrive

is in progress. There are two potential causes: a helping
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parent
p X surplus

0
0

1

q

1

1

0

0

CAS(X , 0, 1

2
)

parent.Arrive

CAS(X , 1

2
, 1)

CAS(X , 1, 0)

parent.Depart

Read(X)

parent.Arrive

parent.Depart

1

2

fail CAS(X , 1

2
, 1)

A

D

A

2

The Arrive of q cannot be linearized: It must be linearized
before p completes its Depart because at that point, the
parent has a surplus, and thus by property 2, so does the
child, which must be due to q’s Arrive. On the other hand,
it must not be linearized before q’s parent.Depart because
after that point, the parent has no surplus. (We elide Read

operations that are immediately followed by successful CAS
operations.)

Figure 5: Flicker due to eager compensation.

CAS(X , 1, 0)

parent.Depart

CAS(X , 0, 1

2
)

parent.Arrive

fail CAS(X , 1

2
, 1)

parent.Depart

A

D

parent
p X surplus q

1 Read(X)

parent.Arrive

1

2

CAS(X , 0, 1

2
)

parent.Arrive

CAS(X , 1

2
, 1)

2

0

1

0

1

2

0

1

CAS(X , 1

2
, 1)

CAS(X , 1, 0)

parent.Depart

1

2

0

1

0

D

A

A

The Arrive of q cannot be linearized: It must be linearized
before p completes its first Depart because at that point,
the parent has a surplus, and thus, so does the child, which
can only be due to q’s Arrive. On the other hand, it must
not be linearized before p completes its second Depart be-
cause after that point, the parent has no surplus.

Figure 6: Flicker due to late helpers.

parent.Arrive and its compensating parent.Depart, as illus-
trated in Figure 5; and a helping process that is so delayed
that it changes X from 1

2
to 1 for a later Arrive than the

one that wrote the 1

2
that it read, as illustrated in Figure 6.

Although this flicker is not a problem for the applica-
tions we have in mind, it violates property 2 above. Our
algorithm, shown in Figure 7, avoids the first problem by
deferring compensating parent.Depart operations until the
end of an Arrive (using the undoArr variable), and avoids
the second problem by adding a version number to X .

Because compensating parent.Depart operations are de-
ferred, the parent’s surplus may be unbounded even if the
child’s surplus never exceeds 1: a single Arrive can try

shared variables:
X = (c, v): (N ∪ { 1

2
}, N); initially (0, 0)

parent : scalable indicator

Arrive
succ← false
undoArr← 0
while (¬succ)

1 x ← Read(X )
if x .c ≥ 1 then

2 if CAS(X , x , (x .c + 1, x .v)) then
succ← true

if x .c = 0 then
3 if CAS(X , x , ( 1

2
, x .v + 1)) then

succ← true
x ← ( 1

2
, x .v + 1)

if x .c = 1

2
then

4 parent.Arrive
5 if ¬CAS(X , x , (1, x .v)) then

undoArr = undoArr + 1
6 while (undoArr > 0) do

parent.Depart
undoArr = undoArr− 1

Depart
while (true) do

7 x ← Read(X ) /* assert X.c ≥ 1 */
8 if CAS(X , x , (x .c − 1, x .v)) then

if x .c = 1 then
9 parent.Depart

return

Figure 7: Code for hierarchical SNZI node.

and fail to help arbitrarily many other Arrive operations.
Therefore, we have implemented an optimization (not shown
in Figure 7) whereby an Arrive does at most two “extra”
parent.Arrives: If undoArr is 2 when a process would invoke
parent.Arrive, the process instead decrements undoArr, elim-
inating one Arrive-Depart pair (thereby further reducing
contention) on the parent. This is safe because the process
has done at least one extra parent.Arrive, so the parent is
guaranteed to have a surplus until the end of the Arrive.
The experiments presented in Section 6 include this opti-
mization, and in the full paper [2], we prove that the par-
ent’s surplus in the resulting algorithm is bounded by one
plus twice the number of ongoing operations on the child.

3.2 Algorithm for the root node
We now describe the SNZI root node. As discussed above,

the root node separates out the indicator bit I , which may
need to be stored in the same memory location as application-
specific data. To abstract away the interaction between ac-
cesses to this indicator bit by our algorithm and accesses to
the same location by the host application, we present our
solutions as if they access the indicator bit using only Read,
load-linked (LL) and store-conditional (SC) operations. Read
and LL return the value of the bit; an SC by process p sets
the bit to a specified new value only if no process has per-
formed a successful SC since the previous LL by process p.
SC can fail “spuriously”; that is, the condition for success
is only if not if and only if. To simplify our presentation,
we also use a Write operation, which is easily implemented
using LL and SC in a retry loop.

We require our solutions to tolerate spurious failures to
abstract away interactions with the host application. For ex-
ample, application-specific information stored together with
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shared variables:
X = (c, a, v): (N, boolean, N); initially (0, false, 0)
I : boolean; initially false

Arrive
repeat

10 x ← Read(X )
if x .c = 0 then

x ′ ← (1, true, x .v + 1)
else

x ′ ← (x .c + 1, x .a, x .v)
11 until CAS(X , x , x ′)

if x ′.a then
12 Write(I , true)
13 CAS(X , x ′, (x ′.c, false, x ′.v))

Depart
repeat

14 x ← Read(X ) /* assert X .c ≥ 1 */
15 if CAS(X , x , (x .c − 1, false, x .v)) then

if x .c ≥ 2 then return
repeat

16 LL(I )
17 if Read(X ).v 6= x .v then return
18 if SC(I , false) then return

Query
return Read(I )

Figure 8: Code for SNZI root node.

the indicator bit may change, causing SC to fail. Similarly,
CAS-based implementations of LL/SC typically use a version
number, and in some cases, this version number may be
shared with the application, and so may change, even though
no successful SC operation on the indicator bit is performed.
In our algorithm, the only effect of a spurious failure is to
cause another iteration of a small loop, degrading perfor-
mance, but not affecting correctness.

As in the hierarchical algorithm, the root node maintains
a counter that is incremented by Arrive and decremented
by Depart. Transitions from 0 to 1 trigger setting I , those
from 1 to 0 trigger clearing I . Processes that increment the
counter after another process increments it from 0 to 1 and
before that process sets I must “help” by setting I .

In this algorithm, shown in Figure 8, we implement help-
ing using an “announce bit” a in the same word as the
counter. A process that increments the counter from 0 to
1 also sets a. Other processes that increment the counter
preserve a. Processes that set the announce bit, or preserve
it as true, set I before attempting to clear the announce bit.
Thus, I is set before any process completes Arrive.

A departing process that decrements the counter to 0
clears I using an LL/SC loop (we must use a loop only be-
cause of the possibility of spurious failures). However, it
reads the counter between the LL and SC, and terminates
without attempting the SC if the counter has changed; we
add a version number to X to ensure that any change is de-
tected. Thus, if the SC succeeds, there is no risk that some
process has completed another Arrive, which would result
in a Query operation incorrectly returning false.

4. PROOF OVERVIEW
In this section, we present an overview of the linearizabil-

ity proof for our SNZI algorithms. A detailed proof appears
in the full paper [2].

4.1 Hierarchical algorithm
The main proof obligation for the hierarchical algorithm

is to show that the parent has a surplus (due to a child)
exactly when the child has a surplus (i.e, property 2 above).
We assume that the parent is linearizable, so we treat its
operations as happening atomically.

The linearization point for a Depart is the last step before
it returns, either when it decrements X to some nonzero
value, or when it performs parent.Depart after setting X to
0. We cannot linearize when X is decremented in the latter
case because a Query operation that occurs after X was set
to 0 but before parent.Depart is performed will return true.

The linearization point for an Arrive is more complicated
because of the possibility of helping. We partition Arrive

operations by when they set the succ flag to true: either
when changing X from 0 to 1

2
or when incrementing X from

some nonzero value at line 2. We call Arrive operations of
the first kind initiators, and those of the second kind joiners.
A joiner must be linearized by the time it successfully per-
forms the CAS at line 2, and an initiator must be linearized
by the time it calls parent.Arrive after setting its succ flag.
However, in some cases, an Arrive must be linearized ear-
lier because of the helping mechanism: If a process attempts
to help an initiator by calling parent.Arrive but then fails
its subsequent CAS at line 5 (because some other process al-
ready changed X ), then we have to consider the helper to
have already linearized because the initiator it was trying to
help may have already departed. Therefore, a parent.Arrive

by a process p may count either for an initiator it is helping
or for p itself: the parent.Arrive counts for the initiator if
p’s subsequent attempt to change X from 1

2
to 1 succeeds,

and for p otherwise.
Unfortunately, when a process performs parent.Arrive,

we may not yet know whether it will count for the ini-
tiator or itself. Fortunately, because Query indicates only
whether there is a surplus, not which operations are respon-
sible for the surplus, we can delay the linearization point
until X is first changed after the initiator sets it. We call
that point the decision point for the initiator. (If the helper
calls parent.Arrive after this point—we call such a helper
late—then we can linearize it immediately.) We must be
sure, however, that the initiator or one of the helpers is lin-
earized by the first time parent.Arrive is called on behalf
of the initiator (i.e., when it is called because some process,
possibly the initiator, saw that X had the 1

2
value set by

the initiator). For simplicity, we require that the initiator
be linearized by that time.

Thus, the linearization point of an Arrive is the first point
at which any of the following occur:

• it performs a successful CAS at line 2;

• it has performed a successful CAS at line 3 (i.e., it is
an initiator) and then some process (possibly itself)
performs parent.Arrive.

• it has performed parent.Arrive while X = x and an-
other process changes X from x ; or

• it performs parent.Arrive late (i.e., when X 6= x ).

We model this point by adding an auxiliary variable done to
the Arrive operation. This variable is initially false, and it
is set to true by the above events. An Arrive is linearized
to the point that its done variable is set to true.
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We now argue that the done variable of process p (hence-
forth donep, and similarly for other local variables) is true
if and only if:

• p is at line 4 or 5 and succp = true (i.e., p’s Arrive is
an initiator) and either X 6= xp or some process q is at
line 5 with X = xq;

• p is at line 5 and X 6= xp;

• undoArrp > 0; or

• p is at line 6.

Note that the first condition is always satisfied if p is at
line 5 with succp = true. Also, because X.v is incremented
whenever a process sets X.c to 1

2
, and xp.c = 1

2
whenever p

is at line 4 or 5, if p is at line 4 or 5 and xp 6= X then xp 6= X

until p reads X on line 1. With these observations, it is easy
to check that once any of these conditions is true, one of
them will be true until p completes its Arrive, that one of
these conditions is true immediately after any of the above
events, and that if none of these conditions is true then none
of them becomes true unless one of the above events occurs.

To verify property 2, note that the surplus of parent is
always equal to the number of processes at either line 5 or
line 9 for an operation plus the undoArr of each process in
the midst of an Arrive if X.c is 0 or 1

2
, and 1 more than

that if X.c ≥ 1. We want to show that this is at least 1 iff
the surplus of the child is at least 1.

The surplus of the child is the number of processes in the
midst of an Arrive with done = true (i.e., linearized but
not completed) plus the number of processes in the midst
of a Depart (i.e., invoked but not linearized) plus the num-
ber of completed Arrive operations minus the number of in-
voked Depart operations. Let N be the number of completed
Arrive operations minus the number of invoked Depart op-
erations. Note that ⌈X.c⌉ is incremented exactly once by
each Arrive (i.e., when succ is set to true) and decremented
once by each Depart, so it is equal to N plus the number
of Arrive operations with succ = true plus the number of
Depart operations at line 7 or 8. Furthermore, if X.c = 1

2

then N = 0, no process is at line 6, 7 or 8, and there is
an initiator is in progress whose decision point has not yet
occurred.

Suppose the surplus of the child is at least 1. If undoArr ≥
1 for any process in the midst of an Arrive or any process
is at line 5 or 9, then the surplus of the parent is at least
1. Also, if N > 0 or some process is at line 6, 7 or 8 then
X.c ≥ 1, so again the surplus of the parent is at least 1.
Otherwise, there must be some process p with donep = true,
undoArrp = 0, and not at line 5 or 6. By our argument
above, this process must be at line 4 with succp = true and
either xp 6= X or there is some process q at line 5 with
xq = X . However, the last case is impossible because no
process is at line 5, so p is an initiator whose decision point
has occurred, and thus X.c ≥ 1 (so the parent surplus is at
least 1).

On the other hand, suppose the surplus of the child is 0.
Then undoArr = 0 for every process, and no process can be
at line 9. Furthermore, if a process p is at line 5, then xp = X

and succp = false. In that case, since X.c = xp.c = 1

2
, we

know there must be some initiator q whose decision point has
not occurred, and in that case doneq = true, contradicting
our assumption that the surplus of the child is 0. Thus, it

remains to show that X.c < 1. Note that if it were at least
1, then, since there is no Arrive that has been linearized
but is not completed, and no Depart that has been invoked
but not is linearized, there must be some initiator p that is
not yet linearized, and thus, whose decision point has not
yet occurred. In that case, we know that X.c = xp.c = 1

2
.

4.2 Algorithm for the root node
For the root node, we show that the indicator bit is set if

and only if there is a surplus. With this property, we can
linearize Query to its only step. We can verify this property
by induction, checking that it is maintained by any steps
that modify I or change the surplus (i.e., lines 12 and 18, and
the linearization points of Arrive and Depart operations).
We say that a process is notable if it is at line 18 and its SC
may yet succeed.

The linearization point of an Arrive is its successful CAS
at line 11 if I = true and no processes are notable at that
point; otherwise it is the first subsequent point that makes
that condition true.

The linearization point of a Depart is its successful CAS at
line 15 if it changes X.c to some nonzero value; otherwise it
is the first subsequent successful SC at line 18 by any process

or the last step of the Depart, whichever comes first.
A key lemma is that I is set and no processes are notable

whenever the counter is nonzero and the announce bit is not
set. We use this lemma to show that the linearization point
for Arrive occurs before the operation completes.

With these linearization points, it is easy to see that I

is true immediately after an Arrive is linearized, and that
when I changes from false to true (making all processes not
notable), the Arrive that performed this step is linearized,
and thus there is a surplus immediately after. Also, when
a Depart decrements the counter to a nonzero value (and
is thus linearized at that point), immediately afterwards,
there must be still a surplus, and, by the lemma above,
I must true. Thus, it remains to consider executions of
lines 17 and 18 that end a Depart operation: these include
all the steps that clear I or are linearization points of Depart
operations that decrement the counter to 0.

First note that, by well-formedness, there is a surplus
whenever an ongoing Depart has not been linearized, and
whenever the counter is 0, any Arrive that incremented the
counter before that point is completed by that point.

Consider the interval from when a Depart decrements the
counter to 0 until the Depart’s last step; call this the active

interval, and let p be the process executing the Depart. Im-
mediately before the active interval, there must be a surplus,
and so, by the inductive hypothesis, I is true.

If the Depart ends because it performs a successful SC on
line 18, then immediately after, I = false, so we must show
that there is no surplus. Any Arrive that increments the
counter in the active interval must do so after p last executes
line 17. Since p is notable from that point until the end of
the active interval, no Arrive is linearized during the active
interval. By the definition of the linearization points, any
Depart that decremented the counter before the end of the
active interval is linearized at or before the end of the active
interval. Thus, there is no surplus immediately after the
active interval.

If the Depart ends at line 17 and this step is not the
linearization point of the Depart, then it changes neither I

nor the surplus, so the property holds by induction.
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Otherwise, the Depart ends at line 17, which is its lin-
earization point. By definition, no successful SC occurs in
the active interval, and by the inductive hypothesis, I = true
throughout. We show that there is a surplus immediately
after the active interval.

If the counter is 0 at the end of the active interval, then
some other Depart must have written X last within the
active interval. That Depart cannot have returned from
line 17, so it cannot have been linearized. Thus, there is a
surplus immediately after the active interval.

Otherwise, at the end of the active interval, there are more
Arrive operations that have incremented the counter than
Depart operations that have decremented it, which include
all linearized Depart operations. If the last such Arrive

has been linearized, then all Arrive operations that have
incremented the counter have also been linearized. Thus,
there is a surplus immediately after the active interval.

If the Arrive that last incremented the counter is not lin-
earized by the end of the active interval, then its increment
occurs during the active interval. From that point to the end
of the active interval, there is some notable process; let q be
a notable process at the end of the interval. If q’s Depart

is not yet linearized, then there is a surplus after the end of
the interval. Otherwise, it is linearized at the first successful
SC after it decremented the counter, which must be before
p decremented the counter since no such SC occurs during
the active interval. Thus, q decrements the counter before
p, and some Arrive increments it in between (since p and q

both decrement it to 0). Because the first Arrive to do so
changes the version number, the last time q checks X before
becoming notable must occur before this point, and thus,
so too must q’s last LL. However, the Arrive that does this
increment must complete before the active interval (because
the counter is 0 at the beginning), and it sets I before doing
so, thus making q not notable, which is a contradiction.

5. SNZI-R
Our SNZI-R algorithm is similar to our SNZI algorithm,

but it has an associated epoch; the primary changes for
SNZI-R are to ensure that operations for previous epochs
have no effect. Below we explain how our SNZI algorithm
can be transformed to implement SNZI-R. Due to space con-
straints, we show the resulting code only for the root node
in Figure 9; the changes to the code for the hierarchical
algorithm are similar.

The internal SNZI-R objects have a slightly different in-
terface than specified in Section 1. In particular, rather
than returning the current epoch, the arrive operation takes
an epoch as a parameter and does not return anything; it
increments S .Surplus if the specified epoch is current, and
does nothing otherwise. This change supports our recursive
implementation, and also enables some optimizations, as ex-
plained below. To distinguish this internal operation from
Arrive, we call it arr.

The indicator word of the root node stores the current
epoch and an indication of whether there is a surplus for
that epoch; a successful Reset operation simply changes to
the new epoch and sets the surplus indicator to false.

The SNZI-R nonroot nodes have an epoch stored together
with their counters. If a nonroot node contains an epoch
other than the current one, it is logically equivalent to con-
taining the current epoch with the counter being 0. There-
fore, steps of operations for an epoch e that encounter a

shared variables:
X = (c, a, v , e): (N, boolean, N, N); initially (0, false, 0, 0)
I = (i , e): (boolean, N); initially (false, 0)

arr(e)
repeat

x ← Read(X )
if x .e > e then return
if x .c = 0 ∨ x .e < e then

x ′ ← (1, true, x .v + 1, e)
else /* assert x .c > 0 ∧ x .e = e */

x ′ ← (x .c + 1, x .a, x .v , e)
until CAS(X , x , x ′)
if x ′.a then

repeat
if LL(I ).e > e then return

until SC(I , (true, e))
CAS(X , x ′, (x ′.c, false, x ′.v , e))

Depart(e)
repeat

x ← Read(X )
if x .e 6= e then return
if CAS(X , x , (x .c − 1, false, x .v , e)) then

if x .c ≥ 2 then return
repeat

if LL(I ).e > e then return
if Read(X ).v 6= x .v then return
if SC(I , false) then return

Query
return Read(I )

Reset(e)
repeat

if LL(I ).e ≥ e then return false
until SC(I , (false, e))
return true

Figure 9: Code for SNZI-R root node.

node with an earlier epoch can simply update the node as if
it contained epoch e and counter 0. If such a step is itself for
an epoch before the current one, such a modification has no
effect as the node still logically contains the current epoch
and a counter value of 0 after the modification.

It is easy to implement Arrive with a simple wrapper.
An Arrive operation begins by invoking Query (on the root
node) to determine the current epoch—call it e—and then
invokes arr(e) on some node. The Arrive operation is deemed
to have joined that epoch, whether the epoch remains cur-
rent or not. If it does, then the arroperation behaves essen-
tially as in the SNZI algorithm, except that it is modified
to treat variables with earlier epochs in them as if they con-
tained epoch e and a counter of 0.

If a Reset operation changes to a new epoch, all changes
made by operations for previous epochs become irrelevant,
because the variables containing previous epochs become
logically equivalent to the new epoch (with counter value
0) as soon as the Reset takes effect. In this case, we can
still linearize a concurrent Arrive to immediately before the
Reset, because Depart operations for previous epochs have
no effect according to the specification, and will have no ef-
fect on the shared object because any variables they modify
have an out-of-date epoch both before and after the modifi-
cation. The same observation enables various optimizations
that allow an operation to return immediately when it de-
termines that its epoch is no longer current.
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Figure 10: Experiments with SNZI and Simple.

6. PERFORMANCE EXPERIMENTS
We implemented our SNZI and SNZI-R algorithms, as

well as simple counter-based implementations called Sim-
ple and Simple-R, in C++. We present results from exper-
iments run on a 48-processor Sun FireTM 6800 server, a
cache-coherent multiprocessor with 24 dual-core 1350MHz
UltraSPARC R© IV chips, 97 GB of shared memory, and a
150 MHz system clock. Each processor chip has a 64 KB
instruction cache, a 128 KB data cache on chip and a 16
MB level-2 cache off chip. We ran similar experiments on
a 136-processor Sun Fire E15K, a cache-coherent multipro-
cessor with 68 dual-core 1.5GHz UltraSPARC R© IV+ pro-
cessor chips, and achieved qualitatively similar results. In
particular, the simple counter-based algorithms continued
to degrade with larger numbers of threads, while our SNZI
algorithms continued to scale well up to the size of the ma-
chine, as they do on the 48-processor machine.

6.1 Overview of experimental design
We designed some simple experiments to evaluate our al-

gorithms with respect to performance characteristics that
we believe will be important for use in software and hy-
brid transactional memory systems, independently of work-
load, transactional memory design decisions, etc. In each
experiment, a single SNZI object is accessed by one query-

ing thread, which repeatedly invokes Query, and some num-
ber of visiting threads, which alternately invoke Arrive and
Depart. We ran each experiment for a fixed amount of time,
and recorded the throughput of the querying thread and the
throughput of the visiting threads (averaged over all threads,
and expressed in visits per millisecond, where a visit is an
Arrive followed by a Depart). Note that query throughput
provides an indication not only of how quickly the SNZI ob-
ject can be queried, but also of how often the indicator word
read by the Query operation is modified. The more often it
is modified, the lower the query throughput will be because
it will suffer more cache misses.

As explained earlier, our SNZI algorithms allow any tree
structure, and allow Arrive operations to begin in any tree
node. Thus they can be configured for different architec-
tures, workloads, etc. and processes can dynamically adapt
the level and node they begin at, according to observed con-
tention or any other factor. For these experiments, how-
ever, we use binary trees of hierarchical SNZI nodes, with
the special root node, as described in Section 3. Each visit-
ing thread is assigned to a leaf of the tree, where it begins
all Arrive and Depart operations. We assign the threads
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Figure 11: Experiments with SNZI and Simple.

roughly evenly to the leaves, except that, when possible, we
avoid assigning just one thread to a leaf, since operations
of such a thread will always invoke the parent’s operations.
We experimented with tree depths from 0 to 5.

6.2 Simple vs. SNZI
Figure 10 presents the visit throughput for Simple and

SNZI with different tree depths (note that the y-axis of every
graph is log scaled); visit throughput generally decreases
as contention increases in all cases. However, deeper trees
provide better scalability, as expected because they provide
more levels of filtering, reducing contention at higher levels.
For example, the ratio between the visit throughput going
from 1 visiting thread to 48 is about 3100 with Simple, 1200
with a depth-0 SNZI tree, and only 1.3 with a depth-4 SNZI
tree.

While deeper trees provide better visit scalability, the
closeup graph on the right shows that deeper trees have
lower visit throughput under low contention: The SNZI so-
lutions are 2.5–8 times slower than Simple with 1 visiting
thread, but up to 550 times faster with 48 visiting threads.
For 3 or more visiting threads, there is always some SNZI
solution that achieves higher visit throughput than Simple.
In Section 6.3 we describe an improved SNZI solution that
achieves the scalability of the basic SNZI algorithm, while
matching the throughput of Simple with low contention.

Figure 11 shows the query throughput. For Simple, query
throughput degrades rapidly as contention increases: its
query throughput with 1 visiting thread is about 12 times
higher than with 48 visiting threads. All of the SNZI so-
lutions provide improved query throughput up to about 3
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Figure 12: Experiments with Simple and SuperSNZI.
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Figure 13: Experiments with resettable variants.

threads. The throughput level reached at 3 threads is within
about 7% of the “optimal” throughput (measured by query-
ing the SNZI in the absence of any visiting threads). With
48 visiting threads, all SNZI solutions have about 550 times
higher query throughput than Simple.

Compared to Simple, the SNZI solutions achieve both
higher visit throughput and higher query throughput, ex-
cept when contention is very low. Finally, it is worth notic-
ing that even though the depth-0 tree does not improve visit
throughput (as all threads contend on the root node), it still
significantly reduces the contention on the indicator word
(as evidenced by higher query throughput); this is exactly
what the root node is designed for.

6.3 SuperSNZI: Best of Both Worlds
As shown above, the SNZI solutions achieve better perfor-

mance than Simple except under very low contention. We
have implemented a variant of SNZI, which we call Super-
SNZI, that incorporates a small counter into the indicator
word. The Query method returns false if and only if both
the SNZI bit and the small counter are 0. While contention
is low, the algorithm uses this counter as Simple uses its
counter. But as contention increases, Arrive operations be-
gin to access the SNZI tree to ensure scalability.

There are many alternatives for deciding which method to
use when arriving. Our implementation uses the SNZI algo-
rithm if it fails to modify the counter too many times, if the
counter is saturated, or if the SNZI indicator bit is already
set. Thus, SuperSNZI starts using the simple counter, and
switches to the SNZI algorithm if contention is high.

Figure 12 show that SuperSNZI achieves visit through-

put similar to Simple with low contention and throughput
similar to SNZI with higher contention—the best of both
worlds. The price we pay is that modifications to the small
counter at low contention result in cache invalidations that
cause query throughput to suffer, but it recovers its advan-
tage over Simple as soon as there is more than 1 thread.
SuperSNZI is clearly superior when visit performance and
throughput are most important.

SuperSNZI has the additional advantage that we can delay
allocation of the SNZI tree until it is used for the first time,
thus avoiding excessive space overhead for SNZI objects that
are not heavily contended. Such an optimization would be
important, for example, when using SNZI to improve the
scalability of reference counts: we do not want to incur the
space overhead of a SNZI tree for every object in the system,
only for those whose reference counts are updated frequently.

6.4 Overhead of SNZI-R variants
We also evaluated resettable variants of Simple and Super-

SNZI, measuring the overhead of supporting Reset, and the
effect of periodic Resets. For SuperSNZI, we used depth-5
trees, as this achieved the best results for high contention,
and similar results for low contention.

The graphs in Figure 13 present 6 curves: Simple, Simple-
R, SuperSNZI, SuperSNZI-R, Simple-R500 and SuperSNZI-
R500. The first four are without any Resets; for the last
two, a separate thread called Reset every 500 microseconds.
These results show that the overhead paid for the Reset fea-
ture is small for both Simple-R and SuperSNZI-R, and that
there is little degradation in the face of occasional Resets.
We have not yet studied the effect of more frequent Resets.
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7. DISCUSSION
Intuitively, the semantics of traditional counters is hard to

achieve with a scalable nonblocking implementation that is
fast in the absence of contention: If two threads that incre-
ment the counter at around the same time, they must receive
different and consecutive return values, and thus they must
synchronize. An implementation that must be fast in the
absence of contention must detect such contention quickly
when it occurs. These observations suggest that an opera-
tion on the counter should quickly access a shared variable
that will also be accessed by every other operation on the
counter. Such an approach leads to centralized synchroniza-
tion, which undermines scalability. Herlihy et al. [5] show
a tradeoff for linearizable counters between latency and the
worst-case number of processes that can simultaneously ac-
cess one shared variable.

High worst-case contention for a variable does not imply
poor scalability in practice. For example, in principle, all
processes could access the indicator bit simultaneously in
our SNZI implementations. However, in practice, they scale
very well because this does not occur. We are interested
in studying how the choice of semantics for counters, SNZI,
and other related objects influences fundamental limitations
with respect to measures that are important in practice.

In some cases, a weaker semantics for SNZI would suffice:
Query could be permitted to return true, even if there is no
surplus. When SNZI is used to detect the possibility of con-
flicts between hardware and software transactions, this may
result in unnecessary overhead due to false conflict detec-
tion, but would not cause incorrect behavior. The weaker
semantics might admit better SNZI implementations, but it
wold provide less precise information, and would require a
nontriviality condition to forbid solutions that always return
true, thereby complicating the specification and raising the
question of whether we had chosen the “right” condition.

If the word containing the indicator bit is updated only
when the indicator bit changes value, then a hardware trans-
action will abort as a result of a call to Query only when the
results of Query are no longer valid. Thus, HyTM can avoid
unnecessary aborts of transactions executed in hardware.
Our algorithm exhibits this behaviour in the common case,
but does not guarantee it. Whether it is possible to make
such guarantees without overly complicating the algorithm
or introducing other disadvantages is unclear.

Stronger well-formedness conditions, for example, that
processes alternate between Arrive and Depart operations,
can be useful for some implementations. Similarly, it may be
convenient to extend the interface, for example, to require
each Depart operation to pass in an identifier returned by
the corresponding Arrive operation.

Our algorithms allow rooted trees of arbitrary depth and
arity, and allow processes to start at any node in the tree.
This is advantageous because the optimal structure and lay-
out of synchronization structures can depend heavily on ap-
plication and architectural details. For example, work on
scalable mutual exclusion locks for large multiprocessors has
shown the benefit of having processes on one node of a large
system first synchronize on local data, and electing one pro-
cess to synchronize with processes on other nodes [9, 7, 8].

8. CONCLUDING REMARKS
We introduced SNZI, a scalable nonzero indicator, and

its resettable variant SNZI-R. We presented practical, non-
blocking, linearizable, scalable implementations that are fast
in the absence of contention and can be instantiated for a
variety of machine architectures. We explained how SNZI
and SNZI-R objects can be used to improve the performance
and scalability of software and hybrid transactional memory
systems. Our performance experiments show that our algo-
rithms have excellent performance characteristics for this
purpose. We therefore plan to experiment with SNZI in a
transactional memory implementation in the near future.
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