Wait-Free Dining Under Eventual Weak Exclusion

Scott M. Pike*, Yantao Song, and Srikanth Sastry

Texas A&M University
Department of Computer Science
College Station, TX 77843-3112, USA
{pike,yantao, sastry}@cs.tamu.edu

Abstract. We present a wait-free solution to the generalized dining philosophers
problem under eventual weak exclusion in environments subject to crash faults.
Wait-free dining guarantees that every correct hungry process eventually eats, re-
gardless of process crashes. Eventual weak exclusion (OWX') actually allows
scheduling mistakes, whereby mutual exclusion may be violated finitely-many
times; for each run, however, there must exist a convergence point after which live
neighbors never eat simultaneously. Wait-free dining under CWA' is particularly
useful for synchronization tasks where eventual safety is sufficient for correctness
(e.g., duty-cycle scheduling, self-stabilizing daemons, and contention managers).
Unfortunately, wait-free dining is unsolvable in asynchronous systems. As such,
we characterize sufficient conditions for solvability under partial synchrony by
presenting a wait-free dining algorithm for GWWAX using a local refinement of the
eventually perfect failure detector &Py .

Keywords: Dining Philosophers, Failure Detectors, Wait-Freedom.

1 Introduction

The dining philosophers problem (or dining for short) is a fundamental scheduling
paradigm in which processes (called diners) periodically require exclusive access to
a fixed subset of shared resources [[112]]. Each diner is either thinking, hungry, or eating.
These states correspond to three basic phases of computation: executing independently,
requesting resources, and utilizing shared resources in a critical section, respectively.
Potential scheduling conflicts are modeled by a conflict graph in which diners with
overlapping resource requirements are connected as neighbors. As such, dining is a
generalization of the mutual exclusion problem, which corresponds to the special case
where the conflict graph forms a clique.

Wait-free dining guarantees that every correct hungry process eventually eats, even
if other processes fault by crashing. The solvability of wait-free dining depends on two
primary factors: (1) the degree to which concurrency is restricted among eating diners,
and (2) the degree to which crash faults can be detected reliably. The former depends
on the applicable safety specification for local exclusion, while the latter depends on
the degree of synchrony in the system.

* This work was supported by the Advanced Research Program of the Texas Higher Education
Coordinating Board under Project Number 000512-0007-2006.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 135146l 2008.
(© Springer-Verlag Berlin Heidelberg 2008

136 S.M. Pike, Y. Song, and S. Sastry

Safety specifications restrict concurrency among eating diners. For example, strong
exclusion prohibits any pair of conflicting neighbors from eating simultaneously, even if
one of them has crashed. This safety property models resources that can be permanently
corrupted by process crashes. Unfortunately, wait-free dining under strong exclusion is
vacuously unsolvable. To see why, consider any diner that crashes while eating. Wait-
freedom guarantees that every correct hungry neighbor will eventually eat, but strong
exclusion prohibits the same. Moreover, this result is independent of whether crashes
can be detected reliably.

A less restrictive model called weak exclusion prohibits only live neighbors from
eating simultaneously. This safety property models resources that are recoverable or
eventually stateless after crash faults. For example, consider a wireless network where
diners broadcast messages over a subset of shared frequencies. If some diner crashes
while eating, then the current transmission terminates. As such, the frequency allocated
to the crashed diner becomes available for subsequent use by neighboring diners.

Wait-free dining for weak exclusion is actually solvable, but it requires substantial
timing assumptions, or, alternatively, access to sufficiently powerful failure detectors.
A failure detector can be viewed as a distributed system service that can be queried
like an oracle for information about process crashes [3]]. Oracle-based algorithms are
decoupled from the underlying timing assumptions about partial or even full synchrony
necessary to implement such fault-detection capabilities in practice. Recent results on
fault-tolerant mutual exclusion indicate that wait-free dining under weak exclusion is
solvable in systems augmented with Trusting failure detectors — a relatively powerful
class of oracles that can reliably detect certain crashes [4].

Unfortunately, trusting oracles require significant assumptions about network tim-
ing parameters to be implemented in practice. By contrast, less powerful oracles that
are implementable in more practical models of partial synchrony — such as those for
solving fault-tolerant consensus — are too weak to solve wait-free dining under weak
exclusion. This problem remains unsolvable even for oracles of intermediate strength.
For example, the eventually perfect failure detector OGP always suspects crashed pro-
cesses, and eventually stops suspecting correct processes [3]]. This oracle, which can
make finitely many false-positive mistakes in any run, is more than sufficient to solve
fault-tolerance consensus. Still, no &’P-based algorithm can solve wait-free dining for
weak exclusion; neighbors of any crashed diner will always be able to starve [3].

Our contribution examines a practical model of exclusion for wait-free dining which
is solvable under modest assumptions of partial synchrony. In particular, we explore
dining under eventual weak exclusion, and show that it is solvable using the afore-
mentioned oracle ¢P. Eventual weak exclusion (abbreviated GWWA hereafter) permits
finitely-many scheduling mistakes whereby conflicting diners eat together. For each
run, however, there exists a time after which no two live neighbors eat simultaneously.

The time to convergence may be unknown, and it may also vary from run to run.
Nevertheless, OWUAX is sufficiently powerful to serve as a useful scheduling abstraction.
For example, OWWAX models recoverable resources where sharing violations precipitate
at worst repairable (transient) faults. G)V A has received considerable attention recently
in the context of shared-memory contention management [6]], conflict managers for self-
stabilizing systems [[7], as well as wait-free eventually fair distributed daemons[8].

Wait-Free Dining Under Eventual Weak Exclusion 137

2 Background and Technical Framework

Although originally proposed by Dijkstra for a ring topology [[1I], dining philosophers
was later generalized by Lynch for overlapping local exclusion problems on arbitrary
graphs [2]]. A dining instance is modeled by an undirected conflict graph DP = (II, E),
where each vertex p € IT represents a diner, and each edge (p, q) € F represents a set
resource conflicts between neighbors p and q.

Each diner is either thinking, hungry, or eating, but initially all diners are thinking.
Diners may think forever, but they can also become hungry at any time. By contrast,
eating is always finite (but not necessarily bounded). Hungry neighbors are said to be in
conflict, because they compete for shared but exclusive resources. A correct solution to
wait-free dining under eventual weak exclusion (CWW.X) is an algorithm that schedules
diner transitions from hungry to eating, subject to the following two requirements:

Safety: Every run has an infinite suffix where no two live neighbors eat simultaneously.

Progress: Every correct hungry diner eventually eats, regardless of process crash faults.

Progress ensures fairness among hungry diners. In particular, dining solutions are not
permitted to starve hungry processes by never scheduling them to eat. In the presence of
crash faults, a dining algorithm that satisfies progress is called wait-free [9]]. The safety
requirement of eventual weak exclusion permits finitely many scheduling mistakes. A
mistake occurs when two live neighbors are scheduled to eat simultaneously.

Computational Model. We consider asynchronous environments where message de-
lay, clock drift, and relative process speeds are unbounded. A system is modeled by
a set of n distributed processes I = {p1,pa,...,pn} Which communicate only by
asynchronous message passing. We assume that the dining conflict graph is a subgraph
of the communication graph, so that each pair of neighboring diners is connected by
reliable FIFO channels.

Fault Patterns. Processes may fault only by crashing. A crash fault occurs when a
process ceases execution (without warning) and never recovers [10]. A fault pattern
F models the occurrence of crash faults in a given run. Specifically, F' is a function
from the global time range 7 to the powerset of processes 27, where F'(t) denotes the
subset of processes that have crashed by time ¢. Since crash faults are permanent, F' is
monotonically non-decreasing. We say that p is faulty in F if p € F(t) for some time
t; otherwise, we say that p is correct in F'. Additionally, a process p is live at time t if
p has not crashed by time ¢. That is, p ¢ F'(t). Thus, correct processes are always live,
but faulty processes are live only prior to crashing.

Failure Detectors. An unreliable failure detector can be viewed as a distributed ora-
cle that can be queried for (possibly incorrect) information about crashes in /7. Each
process has access to its own local detector module that outputs the set of processes cur-
rently suspected of having crashed. Unreliable failure detectors are characterized by the
kinds of mistakes they can make. Mistakes can include false-negatives (i.e., not suspect-
ing a crashed process), as well as false-positives (i.e., wrongfully suspecting a correct
process). In Chandra and Toueg’s original definition [3], each oracle class is defined
by two properties: completeness and accuracy. Completeness restricts false negatives,

138 S.M. Pike, Y. Song, and S. Sastry

while accuracy restricts false positives. More precisely, each oracle class is a func-
tion (defined by the intersection of a completeness property and an accuracy property),
which maps each possible fault pattern to a set of admissible histories.

Our wait-free dining algorithm is based on the eventually perfect failure detector
OP from the original Chandra-Toueg hierarchy [3]]. Informally, OP is a convergent
oracle that always suspects crashed processes and eventually stops suspecting correct
processes. As such, &P may commit finitely-many false positive mistakes during any
run before converging to an infinite suffix during which the oracle provides reliable
information about process crashes. Unfortunately, the time to convergence is not known
and it may vary from run to run.

As originally defined, the scope of &P is global, insofar as it provides informa-
tion about all processes. One drawback of global oracles is that communication over-
head can limit their practicality for large-scale networks. Accordingly, scope-restricted
oracles have been proposed that provide information only about subsets of processes
[TIUT2U13]). Our dining solution uses a variant of OP defined in [14U15]] for which sus-
pect information is only provided about immediate neighbors. This local refinement,
called &Py, satisfies the following completeness and accuracy properties:

Local Strong Completeness — Every crashed process is eventually and permanently
suspected by all correct neighbors.

Local Eventual Strong Accuracy — For every run, there exists a time after which
no correct process is suspected by any correct neighbor.

It is worth noting that &P cannot be implemented in purely asynchronous systems.
Implementations typically use adaptive time-outs based on modest assumptions about
partial synchrony. A simple technique assumes that upper bounds on message delay and
relative process speed exist, but are unknown. Such bounds can be adaptively estimated
by ping-ack protocols which increase a time-out threshold after each false positive.
After finitely-many mistakes, the current time-out will exceed the unknown round-trip
message time, after which false positives desist.

There are known implementations of &P in several other models partial synchrony
as well [BIT6/T7/T8]. The common advantage is that OGP-based algorithms are decou-
pled from explicit commitments to underlying detection mechanisms and/or specific
timing parameters. Additionally, the local refinement &P; can also be implemented
efficiently in sparse, large-scale, and even partitionable networks [13].

3 A Wait-Free Dining Algorithm for OWX

Our solution is based on the classic hygienic dining algorithm [19]]. In hygienic dining,
a unique fork is associated with each edge in the conflict graph. A hungry process must
collect and hold all shared forks to eat. This provides a simple basis for safety, since at
most one diner can hold a given fork at any time. Fork conflicts are resolved according to
a dynamic partial ordering on process priority. After eating, diners reduce priority below
all neighbors; this ensures progress by yielding to previously lower-priority diners.

Wait-Free Dining Under Eventual Weak Exclusion 139

It is easy to see why hygienic dining is not wait-free. Without fault detection, hungry
processes starve whenever missing forks are lost to crashed neighbors. The result is
actually much worse: if no process thinks forever, then the crash of any eating diner
will eventually precipitate global starvation among all processes (not just neighbors).

In our solution, suspicion by &Py serves as a proxy for permanently missing forks.
The completeness property guarantees that every crashed process will be eventually and
permanently suspected by all correct neighbors. As such, hungry neighbors of crashed
diners can avoid starvation by using suspicion as a proxy for permanently missing forks.
Specifically, a hungry diner ¢ can eat if, for every neighbor j, either ¢ holds the fork
shared with j, or the &Py oracle at ¢ suspects j.

Unfortunately, suspicion by &Py is an unreliable proxy for missing forks, because
the eventual accuracy property also allows false-positive mistakes. For example, if live
neighbors falsely suspect each other, they may proceed to eat simultaneously, regardless
of the fork. Ideally, scheduling violations should be limited by the finite number of false-
positive mistakes per run. It remains to show, however, that CWWA will still be satisfied
after Py converges.

A deeper subtlety is the impact of oracular mistakes on maintaining a consistent
ordering of process priorities. In hygienic dining, relative process priorities are typically
encoded directly in the fork variables. As such, it becomes trivial for diners to reduce
their priority below all neighbors after eating, because (1) diners must hold every shared
fork while eating, so (2) the current priority of every neighbor is actually known.

The same technique does not work with &Py, because false-positive mistakes may
enable diners to eat despite missing critical forks. In the worst case, two neighbors can
eat simultaneously even if neither holds the fork. This can occur if the fork is in transit,
but both diners begin eating as the result of mutual suspicion. If the fork is still in
transit when both diners complete eating, then neither diner knows the actual priority
ordering. Unlike hygienic dining, it is impossible for both diners to reduce their own
priority below all neighbors; either one diner will not lower its priority sufficiently, or
both priorities will match (which could lead to symmetries resulting in deadlock).

To circumvent this difficulty, we store process priorities explicitly at each diner,
and assume unique identifiers to break symmetries. Additionally, we establish wait-free
progress even though priorities are reduced by arbitrary values after eating.

3.1 Algorithm Variables

Our algorithm guarantees safety using forks plus the eventual strong accuracy of OP;.
It guarantees wait-free progress using a dynamic ordering on process priorities, plus
the strong completeness of <P;. In addition to the local oracle module, each process
has the following local variables. A trivalent variable state; denotes the current dining
phase: thinking, hungry, or eating. Each process also has a local integer-valued variable
height, (which can grow negatively without bound), and a unique process identifier id;.
Taken together as an ordered pair, (height;,id;) determines the priority, of process i.
Since process identifiers are unique, every pair of priorities, and y, can be totally
ordered lexicographically as follows:

<y = (xheight < y.height) V ((z.height = y.height) A (z.id < y.id))

140 S.M. Pike, Y. Song, and S. Sastry

To implement the forks, we introduce two local variables for each pair of neighbors.
For process 7, we associate a boolean variable fork;; for each neighbor j. Symmetrically,
each process j has a boolean variable fork,; corresponding to neighbor i. We interpret
these variables as follows: fork;; is true iff process ¢ holds the unique fork that it shares
with neighbor j. Alternatively, fork;; is true iff j holds the fork. When the fork is in
transit from one neighbor to the other, both local variables are false. Since the fork is
unique and exclusive, it is never the case that both variables are true.

In addition to the forks, we also introduce a request token between each pair of
neighbors. In general, if process ¢ holds a request token, but needs the corresponding
fork from 7, then ¢ can request the missing fork by sending the request token to j.
Request tokens are implemented and interpreted the same as forks. For process i, we
associate a unique boolean variable token;; for each neighbor j. Symmetrically, each
process j has a boolean variable token;; corresponding to neighbor i.

3.2 Algorithm Actions

A thinking process can become hungry at any time by executing Action 1 and selecting
the corresponding alternative. Action 2 is always enabled while hungry. When executed,
it requests every missing fork for which no previous request is currently pending. This
is achieved by sending the request token to the corresponding neighbor, including the
current priority of the requesting process. As a result, the local token variable becomes
false to indicate that a request has been sent.

Action 3 handles fork requests. The requested fork must be sent immediately if the
recipient is thinking, but also if the recipient is hungry but has lower priority than the
requestor. Otherwise, the fork request is deferred until after eating. Deferred requests
are represented by holding both the shared fork and the request token. Note that if a
hungry process loses a requested fork to a higher-priority neighbor in Action 3, the
relinquished fork will be re-requested by subsequently executing Action 2, which is
always enabled while hungry.

Action 4 simply receives forks, and Action 5 determines when a hungry process can
begin eating. A hungry process ¢ can begin eating if, for each neighbor j, process ¢
either holds the shared fork, or currently suspects j. This is the only action that utilizes
the local oracle &P; and it is central to the wait-freedom of the algorithm.

Action 6 exits eating and transits back to thinking. This action reduces the priority of
the diner, and sends forks for any requests that were previously deferred while hungry
or eating. To reduce priority, Action 6 invokes a local procedure called Lower which
reduces only the height component of the diner’s priority by some positive integer. The
magnitude of the reduction is up to the algorithm designer, and can be either statically
fixed or dynamically chosen at runtime.

Action 6 isolates several subtleties. In hygienic dining, a process must reduce its
priority below that of all neighbors after eating. This absolute reduction forms the basis
for progress, because it forces high-priority diners to yield to lower-priority neighbors.
In our algorithm, oracular mistakes may enable some diners to eat without knowing
the priorities of all live neighbors. As such, hygienic reductions cannot be guaranteed.
Our proof of progress shows that reducing priority by an arbitrary amount is sufficient,
because it still reduces the number of times any diner can overtake its live neighbors.

Wait-Free Dining Under Eventual Weak Exclusion 141

Code for process i, with unique identifier id; and local set of neighbors N (7)

var state; : {thinking, hungry, eating} init, state; = thinking
height; : integer init, height; = 0
priority, : (height; X process-id) init, priority; = (0, id;)
fork;; : boolean, foreachj € N(7) init, fork;; = (1> j)
token;; : boolean, foreach j € N (i) init, token;; = (i <j)
OPy : local eventually perfect detector init, OPy C N(3)
1 : {state; = thinking} — Action 1
2: state; := (thinking or hungry) Become Hungry
3 : {state; = hungry} — Action 2
4: Vj € N(i) where (token;; A —fork;;) do Request Missing Forks
5: send-request (priority;) to j
6 token;; := false
7 : {receive-request (priority;) from j € N (i)} — Action 3
8 token;; = true Send Fork or
9: if (state; = thinking V (state; = hungry A (priority; < priority;))) Defer
10 then send-fork(i) to j
11 fork;; := false
12 : {receive-fork (j) from j € N (i)} — Action 4
13: fork;; := true Obtain Shared Fork
14 : {state; = hungry A (Vj € N (i) :: (fork;; V j € OPy))} — Action 5
15: state; := eating Enter Critical Section
16 : {state; = eating} — Action 6
17: Lower(priority,) Exit Critical Section
18: state; := thinking Send Deferred Forks
19: Vj € N(i) where (token;; A fork;;) do
20 : send-fork(i) to j
21 : fork;; := false
22 : procedure Lower (p : priority) Reduce Priority
23: ensures p’ := Lower (p) where Process ID Unchanged
24 : (p’.id = p.id) and (p’.height < p.height) Integer Height Lowered

Algorithm 1. 1. Wait-Free Dining under Eventual Weak Exclusion

4 Proof of Correctness

Lost tokens or forks can compromise progress, while duplicated tokens or forks can
compromise safety. First we prove some basic lemmas which assert that each pair of
live neighbors share a unique fork and a unique request token.

142 S.M. Pike, Y. Song, and S. Sastry

Lemma 1. There exists exactly one token between each pair of live neighbors.

Proof. For each pair of neighbors, the initialization code creates a unique token at the
lower-priority process. Since communication channels are reliable, this token is neither
lost nor duplicated while in transit. Only Actions 2 and 3 can modify the token vari-
ables. No token is lost, because every token received is locally stored (Action 3), and
no token is locally removed unless it is sent (Action 2). No token is duplicated, because
every token sent is locally removed, and no absent token is ever sent (Action 2). Thus,
token uniqueness is preserved. O

Lemma 2.1. There exists exactly one fork between each pair of live neighbors.

Proof. For each pair of neighbors, the initialization code creates a unique fork at the
higher-priority process. Since communication channels are reliable, this fork is neither
lost nor duplicated while in transit. Only Actions 3, 4, and 6 modify the fork variables.
No fork is lost, because every fork received is locally stored (Action 4), and no fork is
locally removed unless it is sent (Actions 3 & 6). No fork is duplicated, because every
fork sent is locally removed, and no absent fork is ever sent* (Action 3 & 6). Thus, fork
uniqueness is preserved. O

*Action 3 can send forks (Line 11) without verifying their local presence. If such forks
are absent, then this action could compromise WA by duplicating forks. As it turns
out, Action 3 is never enabled unless the requested fork is actually present. This result
may not be obvious from the program text, because it depends explicitly on the assump-
tion of FIFO channels. Consequently, we prove this assertion separately below.

Lemma 2.2. Action 3 is never enabled unless the requested fork is present.

Proof. Suppose for contradiction that Action 3 is enabled at some process ¢ at time o,
but that the requested fork is absent. This action can only be enabled by ¢ receiving a
request token from some neighbor j that executed Action 2 at an earlier time ¢ < ts.
The condition in Line 4 asserts that 7 held the token but not the shared fork at time ;.
Consequently, the fork was already at ¢ or it was in transit at time ¢;.

1. Suppose the fork was in transit from j to 7. By FIFO channels, the fork had to arrive
at 7 before the request token which enabled Action 3 at time ¢5. Only Actions 3 and
6 send forks, but both require the fork and token to be co-located. Thus, the fork
remains at ¢ until Action 3 became enabled at time ¢5.

2. Suppose the fork was in transit from ¢ to j. Then ¢ must have sent the fork by
executing Action 3 or 6 at some earlier time ¢y < ¢;. As mentioned above, the
token must have been co-located with the fork at time y. Again, by FIFO channels,
7 could not execute Action 2 at time ¢1, because the token could not have overtaken
the fork which was still in transit. O

Theorem 1. Algorithm 1 satisfies eventual weak exclusion OGWX. That is, for every
execution there exists a time after which no two live neighbors eat simultaneously.

Wait-Free Dining Under Eventual Weak Exclusion 143

Proof. The safety proof is by direct construction and uses the local eventually strong
accuracy property of &P;. This property guarantees that for each run there exists a time
t after which no correct process is suspected by any correct neighbor.

We observe that faulty processes cannot prevent CWWA from being established.
Since faulty processes are live for only a finite prefix before crashing, they can eat
simultaneously with live neighbors only finitely many times in any run. Consequently,
we can restrict our focus to correct processes only.

Consider any execution o of Algorithm 1. Let ¢ denote the time in « after which
<&P1 never suspects correct neighbors. Let ¢ be any correct process that begins eating
after time ¢. By Action 5, process ¢ can only transit from hungry to eating if, for each
neighbor j, either 7 holds the shared fork or 7 suspects j. Since &P never suspects
correct neighbors after time ¢ in execution «, process ¢ must hold every fork it shares
with its correct neighbors in order to begin eating.

So long as ¢ remains eating, Actions 3 and 6 guarantee that ¢ will defer all fork re-
quests. As such, p will not relinquish any forks while eating. From Lemma 2.1, we
know that forks cannot be duplicated either. Furthermore, &P; has already converged
in o, so no correct neighbor can suspect p. Thus, Action 5 remains disabled for every
correct hungry neighbor of 7 until after ¢ transits back to thinking. We conclude that no
pair of correct neighbors can begirﬂ overlapping eating sessions after time ¢. O

Next we introduce some definitions to construct a metric function for the progress proof.
First, we measure the priority distance between any two processes ¢ and j as:

0, if (priority; < priority;)
dist(i,j) = { height, — height;, if (priority, > priority;) A (id; < id;)
height; — height; + 1, if (priority; > priority;) A (id; > id;)

Suppose for any pair of processes ¢ and j that dist(i, j) = d in some configuration
where j is hungry. While j remains hungry, priority; remains unchanged. Also, recall
from Action 6 that each process reduces the height component of its priority after eating.
Consequently, d is an upper bound on the maximum number of times that process ¢ can
overtake process j before either j gets scheduled to eat or priority; < priority;.

Now we define a metric function M : II — IN for each diner j € II as follows:

M(j) = dist(i,)
i#j
First, we observe that M is bounded below by 0, and that M (j) = 0 iff j currently
has the highest priority value among all processes in 7. In general, the value of M (j)
depends only on processes that are currently higher-priority than j. This is because

" As a technical point, diners might forestall VWX’ by eating with neighbors that began eating
before &'P1 converged. For example, consider neighbors ¢ and j, where ¢ holds the shared
fork, but j began eating by falsely suspecting 7 before &Py converged. Since j is already
eating, but ¢ holds the shared fork, ¢ might violate exclusion by eating with j even after the
oracle has converged. This can happen multiple times, in fact, so long as j continues to eat.
The phenomenon is temporary, however, because j is either faulty and crashes, or j is correct
and must exit eating within finite time. Thereafter, ¢ and j never eat simultaneously again.

144 S.M. Pike, Y. Song, and S. Sastry

dist(i, j) = 0 for any process i with priority, < priority;. If M(j) = b, then b is an
upper bound on how many times any higher-priority process can eat before either j gets
scheduled to eat or priority; becomes globally maximal.

We also note that the metric value of each process in a given configuration is unique:
(i # j) = M(i) # M(j). Moreover, M (i) < M(j) < (priority; > priority;). These
properties follow from the fact that priorities are totally ordered.

Finally,the metric value M (j) never increases while process j is thinking or hungry.
M () can only increase by reducing the height component of priority, in Action 6 after
eating. Importantly, this change in relative priority actually causes the metric values of
all other processes to decrease.

We are now prepared to state and prove the following helper lemma for progress:

Lemma 3. Let C' be a configuration where some correct process is hungry, and let H
denote the set of all hungry processes in C. The correct process j € H with minimal
metric eventually eats, or some correct process ¢ with M (i) < M (j) becomes hungry.

Proof. Let j be the unique correct hungry process with minimal metric value in H.
In other words, j is the highest-priority correct hungry process in configuration C'.
Lemma 3 holds trivially if j eats or if any correct process ¢ with M (i) < M (j) becomes
hungry. Otherwise, j remains the highest-priority correct hungry process forever. We
will show that this latter case leads to a contradiction.

By definition, every faulty neighbor of j will crash within finite time. By the local
strong completeness of &Py, process j will permanently suspect such processes by
some unknown time ¢. Thereafter, 7 must collect forks only from its correct neighbors.

First, 7 will not lose any such forks. By hypothesis, j is hungry and higher priority
than any correct neighbor, so any fork request received by 7 in Action 3 will be deferred.

Second, j will eventually acquire every fork shared with its correct neighbors. By
Lemma 1, j shares a unique request token with each such neighbor. For any missing
fork, Action 2 guarantees that j will eventually send the corresponding token. Since j
is higher priority than any correct neighbor, these fork requests must be honored unless
the recipient is currently eating. In the latter case, the requested fork will be sent when
the correct neighbor exits eating in Action 6.

We conclude that if j remains hungry indefinitely, then j eventually suspects each
faulty neighbor and eventually holds the shared fork with each correct neighbor. By
Line 14, the guard on Action 5 is enabled. So j eats and Lemma 3 is established. O

Theorem 2: Algorithm 1 satisfies wait-free progress. That is, every correct hungry
process eventually eats.

Proof: We prove wait-freedom by complete (strong) induction on metric values.

Base Case: Let j be a correct hungry process with M (j) = 0.

By definition, the metric value M (j) is minimal, so Lemma 3 applies to j. There
are only two outcomes: either j eats, or some process ¢ with M (i) < M (j) becomes
hungry. Since metric values are unique and bounded below by 0, no such process @
exists. Consequently, j eventually eats. O

Wait-Free Dining Under Eventual Weak Exclusion 145

Inductive Hypothesis: Suppose for k£ > 0 that every correct hungry process ¢ with
M (i) < k eventually eats. It remains to show that every correct hungry process j with
M (j) = k eventually eats as well.

Let C be a configuration, and let j be a correct hungry process in C' with M (j) = k.
Suppose that £ is the minimal metric value among all correct hungry processes in C.
Then Lemma 3 applies to j, so we conclude that j eventually eats, or some correct
process ¢ with M (i) < M (j) becomes hungry. Alternatively, suppose that & is not
the minimal metric value among all correct hungry processes in C'. Then some correct
hungry process @ with M (i) < k already exists.

Either way, we conclude that j eventually eats or the inductive hypothesis applies to
some correct hungry process ¢ with M (i) < k. In the latter case, process i eats. As a
correct diner, ¢ eventually stops eating by executing Action 6, which thereby lowers the
height component of priority, and decreases dist(i, j) by at least 1. Recall that while j
remains hungry, M (j) does not increase. Thus, any decrease in dist (i, j) will cause the
metric value of M (j) becomes less than k. Since j is now a correct hungry process with
M (j) < k, the inductive hypothesis applies directly to j. We conclude that j eventually
eats, and that Algorithm 1 satisfies wait-free progress by complete induction. O

5 Contributions

We have examined the dining philosophers problem under eventual weak exclusion in
environments subject to permanent crash faults. Eventual weak exclusion (OWX') per-
mits conflicting diners to eat concurrently only finitely many times, but requires that, for
each run, there exists a (potentially unknown) time after which live neighbors never eat
simultaneously. This safety property models systems where resources are recoverable
or where sharing violations precipitate only transient (repairable) faults. Applications
of OWZX include shared-memory contention management [6], conflict managers for
self-stabilizing systems [7], and wait-free eventually fair daemons [§].

Dining under GWWAX is unsolvable in asynchronous environments, where crash faults
can precipitate permanent starvation among live diners. The contribution of our work
is a wait-free dining algorithm for GWWA' in partially synchronous environments which
guarantees that every correct hungry process eventually eats, even in the presence of
arbitrarily many crash faults. Our oracle-based solution uses a local refinement of the
eventually perfect failure detector &P;. This oracle always suspects crashed neigh-
bors, and eventually stops suspecting correct neighbors. &P provides information only
about immediate neighbors, and, as such, it is fundamental to the scalability of our ap-
proach, since it is implementable in partially synchronous environments with sparse
communication graphs that are partitionable by crash faults.

Our work demonstrates that OGP is sufficient for wait-free dining under SWA. Tt
is an open question, however, whether this oracle is actually necessary. This question
goes to the minimality of our assumptions and the portability of our solutions to weaker
models of partial synchrony. On the one hand, wait-free dining under GWAX is a harder
problem than fault-tolerant consensus; the eventually strong oracle ¢S — which is
sufficient for consensus [3]] — is not sufficient for wait-free dining [20]. Thus, the search
for a weakest failure detector is bounded above by &P and below by ©S.

146

S.M. Pike, Y. Song, and S. Sastry

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1, 115-138
(1971) Reprinted in Operating Systems Techniques, Hoare, C.A.R., Perrot, R.H. (eds.), Aca-
demic Press, pp. 72-93 (1972) (An earlier version appeared as EWD310)

. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In: STOC. Proceed-

ings of the 12th ACM Symposium on Theory of Computing, pp. 70-81 (1980)

. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. Journal

of the ACM 43, 225-267 (1996)

. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual exclusion in asyn-

chronous systems with failure detectors. J. Parallel Distrib. Comput. 65, 492-505 (2005)

. Pike, S.M., Sivilotti, P.A.G.: Dining philosophers with crash locality 1. In: ICDCS. Pro-

ceedings of the 24th IEEE International Conference on Distributed Computing Systems, pp.
22-29. IEEE, Los Alamitos (2004)

. Guerraoui, R., Kapatka, M., Kouznetsov, P.: The weakest failure detectors to boost

obstruction-freedom. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 399-412.
Springer, Heidelberg (2006)

. Gradinariu, M., Tixeuil, S.: Conflict managers for self-stabilization without fairness assump-

tion. In: ICDCS. 27th International Conference on Distributed Computing Systems, pp. 46—
53. IEEE, Los Alamitos (2007)

. Song, Y., Pike, S.M.: Eventually k-bounded wait-free distributed daemons. In: DSN. 37th

International Conference on Dependable Systems and Networks, pp. 645-655. IEEE, Los
Alamitos (2007)

. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. (TOPLAS) 13,

124-149 (1991)

Cristian, F.: Understanding fault-tolerant distributed systems. Comm. ACM 34, 5678 (1991)
Anceaume, E., Ferndndez, A., Mostéfaoui, A., Neiger, G., Raynal, M.: A necessary and suffi-
cient condition for transforming limited accuracy failure detectors. J. Comput. Syst. Sci. 68,
123-133 (2004)

Guerraoui, R., Schiper, A.: I'-accurate failure detectors. In: Babaoglu, O., Marzullo, K.
(eds.) WDAG 1996. LNCS, vol. 1151, pp. 269-286. Springer, Heidelberg (1996)

Raynal, M., Tronel, F.: Restricted failure detectors: Definition and reduction protocols. In-
formation Processing Letters 72, 91-97 (1999)

Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: Impossibility re-
sults and solutions using self-stabilizing failure detectors. International Journal of Systems
Science 28, 1177-1187 (1997)

Hutle, M., Widder, J.: Self-stabilizing failure detector algorithms. In: Fahringer, T., Hamza,
M.H. (eds.) PDCN. Parallel and Distributed Computing and Networks, IASTED/ACTA
Press, pp. 485-490 (2005)

Dwork, C., Lynch, N.A., Stockmeyer, L.: Consensus in the presence of partial synchrony.
Journal of the ACM 35, 288-323 (1988)

Fetzer, C., Schmid, U., Siisskraut, M.: On the possibility of consensus in asynchronous sys-
tems with finite average response times. In: ICDCS. 25th International Conference on Dis-
tributed Computing System, pp. 271-280. IEEE, Los Alamitos (2005)

Sastry, S., Pike, S.M.: Eventually perfect failure detectors using ADD channels. In: Stojmen-
ovic, 1., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007.
LNCS, vol. 4742, pp. 483—-496. Springer, Heidelberg (2007)

Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 6, 632-646 (1984)

Pike, S.M.: Distributed Resource Allocation with Scalable Crash Containment. PhD thesis,
The Ohio State University, Department of Computer Science & Engineering (2004)

	Wait-Free Dining Under EventualWeak Exclusion
	Introduction
	Background and Technical Framework
	A Wait-Free Dining Algorithm for $\Diamond\mathcal{WX}$
	Algorithm Variables
	Algorithm Actions

	Proof of Correctness
	Contributions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

