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Abstract. We study the consensus problem, which requires multiple processes with different
input values to agree on one of these values, in the context of asynchronous shared memory systems.
Prior research focussed either on ¢-resilient solutions of this problem (which must be correct even if
up to t processes crash) or on wait-free solutions (which must be correct despite the crash of any
number of processes). In this paper, we show that these two forms of solvability are closely related.
Specifically, for all n > ¢ > 2 and all sets S of shared object types (that include simple read/write
registers), there is a ¢-resilient solution to n-process consensus using objects of types in S if and only
if there is a wait-free solution to (¢ + 1)-process consensus using objects of types in S.

Our proof of this equivalence uses another result derived in this paper, which is of independent
interest. Roughly speaking, this result states that a wait-free solution to (n — 1)-process consensus
is never necessary in designing a wait-free solution to n-process consensus, regardless of the types of
objects available. More precisely, for all n > 2 and all sets S of shared object types (that include
simple read/write registers), if there is a wait-free solution to n-process consensus that uses a wait-
free solution to (n — 1)-process consensus and objects of types in S, then there is a wait-free solution
to m-process consensus that uses only objects of types in S.

Key words. asynchronous distributed computation, consensus, wait-free algorithms, fault tol-
erant algorithms, impossibility results

AMS subject classifications. 68W15, 68Q17

1. Introduction. We consider concurrent systems in which asynchronous pro-
cesses communicate via typed shared objects. Informally, an object’s type specifies:
(i) the number of ports, which represents the maximum number of processes that
may access the object simultaneously; (ii) the set of states of the object; (iii) the set
of operations that processes may apply to the object through its ports; and (iv) the
behavior of the object, described by the effect of each operation on the object’s state
and the value the operation returns, assuming no other operation is accessing the
object at that time. Every object is linearizable [14]: when operations are invoked
concurrently at different ports, the object behaves as if each operation had occurred
instantaneously, with no interference from other operations, at some point between
the time it was invoked and the time it returned its response. An object that belongs
to a type with n ports is called n-ported.

In such systems, some shared objects, such as registers and test&set objects, are
supported in hardware, while other objects, such as queues and stacks, are imple-
mented in software. Objects used in the implementation of another object (registers
and test&set objects, in our example) are called base objects with respect to that
implementation. We consider two forms of implementations, wait-free and ¢-resilient.
An implementation is wait-free if every process can complete every operation on the
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implemented object in a finite number of its own steps, regardless of whether other
processes are fast, slow, or have crashed [18, 27, 12]. Wait-free implementations pro-
vide an extreme degree of fault-tolerance. They assure that even if just one process
survives, it will be able to complete its operations on the implemented object. In
contrast, t-resilient implementations support a more modest degree of fault-tolerance
[11, 10, 23]. They guarantee that nonfaulty processes will complete their operations,
as long as no more than t processes fail, where ¢ is a specified parameter. It is imme-
diate from the definitions that wait-freedom is equivalent to (n — 1)-resilience, where
n is the number of processes in the system.

This paper concerns t-resilient and wait-free implementations of a particular type
of object, known as n-consensus. Informally, an n-consensus object allows each of
n processes to access it by proposing a value; the object returns the same value to
all accesses, where the value returned is the value proposed by some process. The
following are two reasons why it is important to implement n-consensus objects:

e It is possible to design a wait-free implementation of an object of any type,
shared by n processes, using only n-consensus objects and registers [12].!

e In an asynchronous system, since processes progress at independent and ar-
bitrarily varying speeds, the view that a process holds of the global state of
the computation does not necessarily coincide either with the reality or with
the views of other processes. However, processes can reconcile their differ-
ences and arrive at a mutually acceptable common view if they have access
to consensus objects.

A lot of research was aimed at determining the feasibility of implementing n-
consensus objects from other types of objects. Some of this research studied the
feasibility of ¢-resilient implementations [11, 10, 23], while some studied the feasibility
of wait-free implementations [23, 12, 9]. To a large degree, the two questions, namely,
the feasibility of ¢-resilient implementations and the feasibility of wait-free implemen-
tations, were treated separately, as if they had no particular relationship with each
other (see Section 1.1, for an exception). The main contribution of this paper is to
show that the two questions are closely related, as we explain below.

Consider the task of devising a t-resilient implementation of an n-consensus ob-
ject. As n decreases, the fraction of nonfaulty processes on which the implementation
can rely gets smaller, and the task therefore seems to become progressively more dif-
ficult. For example, a t-resilient implementation that works only when a majority of
processes are nonfaulty cannot be used when n becomes smaller than 2¢ + 1. In the
limit, when n becomes t+1, the task amounts to providing a wait-free implementation
of the object. Thus, prima faciae, it seems that the ability of objects belonging to
a set S of types to support a t-resilient implementation of an n-consensus object is
greater than their ability to support a wait-free implementation of a (¢ + 1)-consensus
object. We show that this is not the case. Specifically, our result is:

Equivalence Theorem: For all n > ¢t > 2 and all sets S of types that
include register (S may include nondeterministic types), there is a t-resilient

LA register is an object that allows processes to access it (only) through write operations, each of
which stores a new value into the register, and read operations, which return the current value of the
register. It is possible to implement k-ported registers, for any k, from just 2-ported registers. This
is a consequence of the well-known fact that arbitrary multi-reader, multi-writer atomic registers
(hence, k-ported registers, for any k) can be implemented from single-reader, single-writer (hence, 2-
ported) atomic registers. (For more information on register constructions see, for example, [19, 15].)
Because of this, whenever we mention registers we do not bother to explicitly specify the number of
ports: it is understood that any number of ports greater than one suffices.
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implementation of an n-consensus object from objects of types in S if and
only if there is a wait-free implementation of a (¢ + 1)-consensus object from
objects of types in S.

One use of our theorem stems from the observation that proofs of impossibility of
t-resilient implementations of consensus tend to be generally much harder than proofs
of impossibility of wait-free implementations of consensus.? Qur theorem allows one
to conclude the impossibility of ¢-resilient implementations of n-consensus simply by
establishing the impossibility of wait-free implementations of (¢ 4+ 1)-consensus. For
instance, since there is no wait-free implementation of 3-consensus from queues and
registers [12], our theorem implies that there is no 2-resilient implementation of n-
consensus from queues and registers (for all n > 3). We present several other such
applications of our theorem.

A key ingredient in our proof of the equivalence theorem discussed above is an-
other result of this paper that is of interest in its own right. Roughly speaking, this
result states that (n — 1)-consensus objects are not necessary for a wait-free imple-
mentation of n-consensus, no matter what other base objects may be available for the
implementation. Specifically, our result is:

Generalized Irreducibility Theorem for Consensus: For alln > 2 and
all sets S of types that include register (S may include nondeterministic
types), if there is a wait-free implementation of an n-consensus object from
(n — 1)-consensus objects and objects of types in S, then there is a wait-free
implementation of an n-consensus object from objects of types in S.

In other words, the (n — 1)-consensus base objects can be eliminated from the
implementation.

The above theorem is more general (and has a more complex proof) than the
well-known irreducibility of consensus, stated as follows: for all n > 2, there is no
wait-free implementation of an n-consensus object from (n — 1)-consensus objects and
registers [12, 17]. To illustrate the difference between the two results, consider the
following question: Is there a wait-free implementation of a 4-consensus object from
3-consensus objects, 4-ported queues, and registers? The irreducibility of consensus
does not help answer this question, but our result does. Specifically, since there is no
wait-free implementation of a 4-consensus object from 4-ported queues and registers
[12], our result implies that the answer to the above question is no.

1.1. Related Work. As stated earlier, this paper has two main results, the
generalized irreducibility theorem and the equivalence theorem. We discuss below
prior research related to each of these results.

Our generalized irreducibility theorem is related to the following robustness ques-
tion, posed in [16]: Suppose that (a) there is no wait-free implementation of an
n-consensus object from registers and objects of type T, and (b) there is no wait-free
implementation of an n-consensus object from registers and objects of type T". Does
it then follow that there is no wait-free implementation of an n-consensus object from
registers, objects of type T', and objects of type T"?

For the special case when one of T and T’ is m-consensus, for any m, and the
other type is arbitrary (it may even be nondeterministic), our generalized irreducibility
theorem states that the answer to the robustness question is yes. For the case when

2The difference in difficulty can be appreciated by comparing the proof that there is no wait-free
implementation of a 3-consensus object from registers and 1-bit read-modify-write objects to the
proof that there is no 2-resilient implementation of an n-consensus object from the same objects [23].
The latter proof is much longer (three pages versus one page) and the arguments are more involved.
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both T" and 7" are deterministic, Borowsky, Gafni, and Afek [5], and Peterson, Bazzi,
and Neiger [26] prove that the answer is yes. Neither result is strictly stronger than
the other: our result restricts one of the types to be m-consensus, while theirs
restricts both types to be deterministic. It is significant that our result applies to all
types, not just deterministic ones, because nondeterministic types sometimes exhibit
dramatically different properties. For instance, in sharp contrast to the results in
[5, 26] stated above, Lo and Hadzilacos prove that the answer to the robustness
question is no if types may be nondeterministic [20]. For different models, Chandra
et al. [7], Moran and Rappoport [25], and Schenk [29] also prove that the answer to
the robustness question is no.

We now describe prior work related to our equivalence theorem. To our knowl-
edge, Borowsky and Gafni are the first to relate t-resilient and wait-free implementa-
tions of tasks. To state their result we need to introduce a new object type, called
n-ported k-set consensus. Informally, an object of this type allows each of n pro-
cesses to access it by proposing a value. Each access returns some value that has
been proposed to the object, subject to the requirement that the number of different
values returned by all the accesses does not exceed k. Thus, an n-consensus object
is the special case of this object where k¥ = 1. Borowsky and Gafni’s result is that,
for all n > t, if there is a t-resilient implementation of n-ported ¢-set consensus from
registers then there is a wait-free implementation of (¢ + 1)-ported ¢-set consensus
from registers [3]. It was also shown (independently, in [3, 13, 28]) that there is no
wait-free implementation of (¢ 4+ 1)-ported t-set consensus from registers. In conjunc-
tion with this, Borowsky and Gafni’s result implies that there is also no t-resilient
implementation of n-ported ¢-set consensus from registers, for all n > t.

Our equivalence theorem differs from Borowsky and Gafni’s result in fundamental
ways. First, our result concerns t-resilient implementations of consensus, while theirs
concerns t-resilient implementations of #-set consensus. Second, our result applies re-
gardless of the types of objects used in the implementation, while their result requires
the objects to be registers. The two results are independent in that neither implies
the other.

The proofs of both results are based on simulation techniques whereby a small
number of processes simulate a t-resilient algorithm originally designed for a larger
number of processes, in a manner that preserves the resilience of the original algo-
rithm. The two simulation techniques bear some superficial resemblance but they
differ in substance, reflecting the differences between the results noted in the previous
paragraph. The simulation we use to obtain the generalized irreducibility theorem (cf.
proof of Lemma 5.1) applies only to consensus algorithms, while Borowsky and Gafni’s
simulation [3, 6] (as well as the simulation we use to obtain the equivalence theorem
— cf. proof of Lemma, 6.2) applies to a wider class of algorithms that is formally char-
acterized in [6]. Also, the simulations we use to obtain the generalized irreducibility
theorem and the equivalence theorem apply to algorithms that use arbitrary base
objects, while Borowsky and Gafni’s simulation applies only to algorithms that use
registers. There is a variant of Borowsky and Gafni’s simulation [4, 8] that applies
to algorithms that use registers and k-set consensus objects. This variant, however,
cannot be used to obtain our equivalence theorem because the algorithm that results
from the simulation has lower resilience than the original, simulated algorithm.

Our equivalence theorem requires that ¢t > 2. A result by Lo, strengthened further
by Lo and Hadzilacos, proves that the “only if” direction of our theorem does not
hold for ¢ = 1: There exist nondeterministic [22] and even deterministic [21] object
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types which, together with registers, can provide a 1-resilient implementation of 3-
consensus, but cannot provide a wait-free implementation of 2-consensus.

1.2. Organization. In Section 2, we describe the model. In Sections 3 and
4, we present the intermediate results needed to prove the generalized irreducibility
theorem. This theorem and the equivalence theorem are then proved in Sections 5
and 6, respectively.

2. Model and Definitions. Our description of the model is somewhat informal.
Herlihy [12] has shown how to formalize a similar model using I/O automata [24]. We
use the following notation for sets of natural numbers: for any i, € N, [i..j] = {k €
N:i<k<j}

2.1. Types. A type is a tuple T = (n, OP,RES, Q,0), where n is a positive
integer denoting the number of ports, OP is a set of operations, RES is a set of
responses, () is a set of states, and 6 C @ x OPx[1..n]x Q@ x RES'is the type’s sequential
specification. The number of ports corresponds to the maximum number of processes
that can concurrently access an object of this type. The sequential specification
describes the behavior of an object of this type in the absence of concurrency: If
operation op is applied to port ¢ of an object of type 7" when the object is in state ¢, the
object can enter state ¢’ and return response res if and only if (¢, op,i,q’, res) € §. If,
for each (g, op, i) € Q@ x OP x[1..n], the set {(¢', res) : (g, op,i,q', res) € §} has at most
one element, T is deterministic. In this paper we allow types to be nondeterministic,
but we require that they exhibit finite nondeterminism: each of the above sets must
be finite.

For example, the n-ported consensus type n-consensus® informally described
in Section 1 can be formally defined as the tuple (n, OP, RES,(),d), where OP =
{propose u:u € N}, RES=N, Q =NU{L}, and for each i € [1..n] and u,v € N, §
contains exactly the following tuples: (L, propose u,i,u,u) and (v, propose u,i,v,v).
Clearly, this is a deterministic type.

2.2. Objects and Linearizability. An object O is an instance of a type ini-
tialized to a specified state. For each operation op and port ¢ of its type, O provides
an access procedure APPLY(0p,i,0). This is the sole means by which operation op
can be applied to port i of O. As explained above, the sequential specification of
O’s type describes the behavior of O when access procedures are applied sequentially.
In general, however, access procedures at different ports of an object can be applied
concurrently. Usually, the behavior of the object in this case is constrained by the
assumption that the object is linearizable [14]. This means that if there are no con-
current accesses to the same port then the object behaves as if it had been initialized
to the specified state and each access procedure occurred instantaneously at some
point between its invocation and its response.* Occasionally it will be convenient to
consider objects that are linearizable only if used in restricted ways. When discussing
such objects we will explicitly state the conditions under which they are linearizable.

In general, when we talk about an object we need to specify both its type and
its initial state. However, in the case of consensus objects (i.e., objects of type n-
consensus, for some n) we will assume, without explicitly saying so, that the initial

3Throughout the paper we use the typewriter font for type names.

4We emphasize that the linearizability assumption constrains the behavior of an object only if
access procedures at the same port are applied sequentially. No assurances are given about what the
object does if access procedures are applied concurrently to one of its ports. The object may fail to
respond, or it may return arbitrary responses in that case.
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state is L. This is because a consensus object initialized to any state other than L is
trivial: it remains in that state forever returning it to each invocation.

2.3. Implementation of Consensus. We now explain what is an implemen-
tation of a target object O of type T from a set A of base objects. The concept of
implementation can be defined in a general way, for target objects of any type. In this
paper, however, we are concerned exclusively with implementations of n-consensus ob-
jects. For simplicity and brevity we tailor our definitions specifically to such objects.

An implementation of an n-consensus object O from a set A of objects consists of a
specification of access procedures APPLY (propose u,i, O), for each u € Nand i € [1..n].
These access procedures can store and manipulate values in private variables using
ordinary programming language constructs; in addition they can apply operations
(only) to objects in A through the access procedures provided by those objects. To
apply operation op to port i of a base object O € A, an access procedure of the target
object O invokes APPLY(0p, i, O); when this operation finishes it returns a response. A
step of the target object O’s access procedure refers to the invocation of an operation
at some port of a base object, the receipt of that operation’s response, and (if relevant)
the assignment of that response to a private variable of O’s access procedure. We do
not assume a step to be atomic: the invocation of an operation and its response may
be separated in time and, during this interval, steps may be performed at other ports
of the base object and/or at other base objects. We do, however, assume that a step
terminates or, equivalently, that base objects are responsive: once an operation is
invoked at a port of a base object, a response is eventually returned.

The implementation must satisfy certain safety properties (typically linearizabil-
ity) and liveness properties (typically wait freedom or t-resilience). We will state the
properties that must be satisfied by (concurrent) executions of O’s access procedures.
Before doing so, we need to clarify certain points about such executions.

First, we assume that at most one operation is applied to each port of O. This
assumption can be made without loss of generality because O is a consensus object:
If multiple operations could be applied to a port, the response given by a port to
the first propose operation applied to it can be stored in a private variable associated
with the port and returned to any subsequent operation without involving accesses
to any other shared objects (recall that operations to the same port must be applied
sequentially).

Second, the concurrent executions we consider may contain one or more access
procedures of O that have not run to completion. Taking such executions into account
is necessary since we are interested in executions where some of the processes that
invoke access procedures may crash. Therefore, given an execution, there are four
mutually exclusive possibilities for an access procedure P (note that, in view of the
previous paragraph, there can be at most one instance of P in an execution):

(a) P does not appear in the execution. This could be because in this execution no
process had an interest in invoking P, or because the process that has an interest
in invoking P has not gotten around to it yet (and perhaps never will because it
has crashed).

(b) P is finite and incomplete in the execution, meaning that it has been invoked but
has not returned a response. This could be because the process invoking P has
not had a chance to run long enough or because it has crashed.

(c) P is complete (and, of course, finite) in the execution, meaning that P has re-
turned a response.

(d) P is infinite (and, of course, incomplete). In this case the process invoking P
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does not crash (since P has infinitely many steps in the execution), yet the access

procedure does not terminate. A typical reason for this behavior is that processes

that invoked other procedures crashed at inopportune moments, making it impos-
sible for P to terminate. In this case we will say that the nonterminating access
procedure is blocked in this execution.

With these comments in mind, consider a concurrent execution £ of a consensus
object O’s access procedures. First we will define the safety properties that should
hold in £. We say that O

o satisfies validity in & if any value returned by any access procedure in £ was
proposed by some access procedure in £.

e satisfies agreement in £ if no two values returned by access procedures in &
are different.

Recall that an n-consensus object O is linearizable in £ if the values returned
by the access procedures in £ are in accordance with the sequential specification of
n-consensus, when O is initialized to state L and each access procedure in £ takes
effect atomically at some point after it is invoked and before it completes. It is easy
to see that O satisfies validity and agreement in £ if and only if it is linearizable in
E. Thus, instead of proving that an implementation of n-consensus is linearizable, we
will prove that it satisfies validity and agreement.

Next we discuss the liveness properties of the implementation. Intuitively, wait
freedom requires that if a process that invokes an access procedure of the target object
O does not crash then it will receive a response, no matter how many processes
invoking access procedures at other ports of O crash. The property of t-resilience
requires that if a process that invokes an access procedure of the target object O
does not crash then it will receive a response, as long as at most ¢ processes invoking
access procedures at other ports of O crash. Actually, there are two slightly different
formulations of t¢-resilience. The weaker formulation assumes that all of O’s ports
must be accessed in an execution. Thus, if an access procedure does not appear in
&, the process that was supposed to invoke it is considered to have crashed. The
stronger formulation of ¢-resilience does not make this assumption; here, an access
procedure may not appear in £ just because no process had an interest in invoking it
in this execution. The difference between these two formulations lies in what counts
as one of the up to t crashes that the implementation is supposed to tolerate. With
respect to the four aforementioned possibilities (a)—(d) for an access procedure in an
execution, in the weaker formulation access procedures in case (a) and (b) count as
crashes; while in the stronger formulation only access procedures in case (b) count
as crashes. It turns out that our equivalence theorem holds under both definitions of
t-resilience.

We now state the liveness properties that should hold in £. We say that O

e is wait-free for port i in £ if for every u € N, ApPLY(propose u,i,0) is finite
in £.

e is wait-free in &£ if it is wait-free for each port in £.

o is weakly t-resilient in & if the access procedure at some port is infinite only
if the access procedures in more than ¢ other ports do not appear or are finite
and incomplete in £.

e is strongly t-resilient in £ if the access procedure at some port is infinite only
if the access procedures in more than ¢ other ports are finite, non-empty and
incomplete in £.

For each of the safety and liveness properties defined above, we omit the qualifier
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“in £ if the property holds in every concurrent execution of the target object’s access
procedures in which the base objects are linearizable.

2.4. Binding schemes. The binding scheme of an implementation refers to the
rules that govern how each access procedure of the implementation’s target object can
apply operations to ports of the base objects — specifically, the number of ports of a
base object to which it can apply operations, and the length of time during which it
is permitted to apply operations to these ports. Under the most permissive binding
scheme, called softwired binding [5], an access procedure can apply operations to any
number of ports of a base object, and it “owns” the port only for the duration of each
operation. In this binding scheme, different access procedures of the target object may
apply (at different times) operations to the same port. Under the more restrictive
one-to-one static binding scheme, for each access procedure P and each base object
O there is at most one port of O to which P can apply operations, in all executions
of the implementation; moreover no other access procedure can apply operations to
that port of O. With one-to-one static binding, we can think of each port of a base
object as being “owned” by an access procedure of the target object, namely the one
that is allowed to apply operations to that port.

Unless otherwise specified, in this paper we assume softwired binding.

2.5. A remark on composing implementations. An implementation Z' may
depend on another implementation Z. For instance, suppose that Z' implements an
object O’ and this implementation uses, among others, an object @ implemented
by Z. In this case, an access procedure P’ of @' might include a call to an access
procedure P of O. We note that the execution of P should not be viewed as a single
step (because a step is required to terminate, but the termination of P may not be
necessarily guaranteed by the design of O). The correct view is that O is implemented
from base objects and, hence, the execution of P amounts to performing a sequence of
steps on these (responsive) base objects, as dictated by the implementation Z. Thus,
O is not viewed as a base object of O'; instead, the base objects of O are viewed as
also belonging to the set of base objects of O'.

3. Achieving One-to-One Static Binding With Base Consensus Ob-
jects. In this section, we prove a result that we will later use in our proof of the
generalized irreducibility theorem (Section 5). In general, the binding of a target
object O with its base objects is not one-to-one static. The main result of this sec-
tion is that, if O has some base consensus objects then it is possible to transform
the implementation so that, in the new implementation, the binding of O with all its
base consensus objects is one-to-one static. We begin by describing an intermediate
implementation needed to prove this result.

For any m > n, we describe how to implement an m-consensus object O from
n-consensus objects. The binding of O with its base objects is one-to-one static but
our implementation is only conditionally correct: It is always wait-free, and it satisfies
validity and agreement provided that no more than n of the m access procedures of
O take steps.

Consider the n-element subsets of [1..m]. Let Si,Ss,...,S¢ be a listing of these
subsets, where { = (77’:) For all i € S;, define pos(i,Sj) = k if ¢ is the kth smallest
element in S;.

Our implementation of an m-consensus object O, described in Figure 3.1, em-
ploys £ base n-consensus objects, denoted Oi,0Os,...,0p. The access procedure
AppLY(propose v,i,0) is implemented as follows. For brevity, let P denote this



Generalized irreducibility of consensus 9

01,03, ...,0;: n-consensus objects, initialized to L

AppLY(propose u,i,0); u € Nyi € [1..m]

est; ;= u
for j :=1to ¢ do
if i € S; then
est; := APPLY(propose est;, pos(i, S;), O;)
return est;

Fic. 3.1. Implementation of m-consensus object O from n-consensus objects

access procedure. P keeps a running estimate of the eventual return value in a local
variable est;. Initially, this estimate is v, the value that P wants to propose. P con-
siders the base objects Oy, ..., Oy in sequence and performs the following actions. For
each base object O, P checks if i € S;. If i ¢ S;, P does not access O;. Otherwise, it
proposes its current estimate to O; (at port pos(i, Sj) of O;) and regards the return
value as its new estimate. After considering all base objects, P regards the estimate
as the response of O.

LEMMA 3.1. The implementation of m-consensus object O in Figure 3.1 has the

following properties:
1. The binding of O (with all its base objects) is one-to-one static.
2. O is wait-free.
3. O satisfies validity and agreement in all executions in which at most n access
procedures take steps.
Proof. Part 1 follows from the observation that, port ¢ of O applies an operation
to port p of base object O; if and only if i € S; and pos(i,S;) = p. Part 2 follows
from the fact that the implementation has no unbounded loops.
For Part 3, consider an execution £ where iy,1s,...,7, are all the ports of O at
which access procedures are invoked. (We may assume, without loss of generality, that
access procedures in exactly n ports are invoked: if there is an execution that violates
validity or agreement and involves access procedures in n’ ports, where n’ < n, then
there is also an execution that violates validity or agreement, respectively, and involves
access procedures in exactly n ports.) Specifically, let APPLY (propose ug,ix, O) be the
access procedure executed at port ix; for brevity, let P;, denote this access procedure.
We argue below that O satisfies validity and agreement in £.
O satisfies validity: Using the fact that the base objects Oy, ..., satisfy
validity, it follows by an easy induction that O satisfies validity.
O satisfies agreement: Consider the object O; such that S; = {i1,i2,...,4n}.
Foreach k € [1..n], P;, accesses Oj in its jth iteration of the for-loop. Since O;
returns the same response u to every access procedure that applies a propose
operation to it, it follows that all access procedures have the same estimate u
at the end of j iterations of the for-loop. That is, for all k € [1..n], est;, =u
just after P;, completes the jth iteration of the for-loop. Since Ojy1,...,0;
satisfy validity, it follows from the implementation that the estimate of an
access procedure never changes from the (5 + 1)th iteration onwards. Thus,
for every k € [1..n], P;, returns u.

This completes the proof of the lemma. O
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LEMMA 3.2. Let m > n and S be any set of types. Consider a wait-free imple-
mentation of an m-consensus object O from objects belonging to types in S. Suppose
that O has an n-consensus base object O. If the binding of O with O is not one-to-
one static, it is possible to modify the implementation of O, by replacing O with a
bounded number of n-consensus objects, in such a way that the new implementation
satisfies validity and agreement, is wait-free, and the binding of O with each of the
newly introduced n-consensus base objects is one-to-one static.

Proof. Suppose that the binding of O with O is not one-to-one static. Consider
the following modifications to the implementation of O:

1. The base objects of the new implementation are the same as in the original
implementation with one exception: The base object O is replaced with O',
where O’ is implemented as in Figure 3.1. (Thus, O' is an m-consensus object,
but it is implemented entirely from n-consensus objects.)

2. The access procedures of the new implementation are the same as in the
original implementation with one exception: Each time an access procedure
AppLY(propose v, i, Q) performs, in the original implementation, an operation
(say, propose u) at some port j of O, the new implementation requires the
access procedure to perform the same operation (namely, propose u) at port
iof O'.

It is obvious from the above modifications that, in the new implementation, port
i of O' is used only by the access procedures for port i of @. This, together with
the fact that the binding between O’ and its base objects is one-to-one static (by
Part 1 of Lemma 3.1), implies that the binding between @ and the newly introduced
n-consensus base objects (i.e., the base objects of O') is one-to-one static.

The fact that the new implementation satisfies validity and agreement follows
from two facts: (i) O, the base object of the old implementation, has only n ports,
and (ii) O', which replaces O, satisfies validity and agreement if it is accessed at no
more than n of its m ports (by Part 3 of Lemma 3.1).

That the new implementation is wait-free follows again from two facts: (i) the old
implementation is wait-free, and (ii) the implementation of O’ is wait-free (by Part 2
of Lemma 3.1). This completes the proof of the lemma. O

4., The Building Blocks. In this section we present three implementations
of n-consensus objects from (n — 1)-consensus objects. These implementations are
only conditionally correct: each ensures wait freedom, validity and agreement only in
executions that satisfy certain conditions. Yet they have certain nice properties that
make them useful in the proof of the generalized irreducibility theorem, presented in
the next section.

4.1. Nonconcurrent Implementation. Figure 4.1 shows an implementation
of n-consensus object O from two (n — 1)-consensus objects O and O" and a register
DEC. This implementation is wait-free and, if the access procedures for ports n—1 and
n are not executed concurrently, the implementation satisfies validity and agreement.

The implementation is informally described as follows. For i € [1..n], let P; denote
the access procedure APPLY(propose u;,i,0), where u; € N. Py,..., P,_o share O’s
base objects O and O’ with P,_; and P,, respectively. For each i € [1..n — 2], P;
proposes its value u; to O, proposes the return value from O to O', writes the return
value from O’ in register DEC (for “Decision”), and returns it. Each of P,_; and
P, first checks if the return value is already available in DEC. If not, it proposes its
value to the appropriate base consensus object (namely, O for P,_; and O’ for P,),
writes the return value from the base consensus object in DEC, and returns it.
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0,0'": (n — 1)-consensus objects, initialized to L
DEC: register, initialized to L

APPLY (propose u,i,0); u € N,
i€[l.n—2

v; := APPLY(propose u,i,0)
DEC := AppLY(propose v;,i,0")

return DEC
AppLy(propose u,n —1,0); u € N AppLY(propose u,n,0); u € N
if DEC = 1 then if DEC = 1 then
DEC := ArpLY(propose u,n — 1,0) DEC := AppLY(propose u,n — 1,0")
return DEC return DEC

F1G. 4.1. Nonconcurrent implementation of n-consensus object O from (n — 1)-consensus objects

We now explain intuitively why this implementation works. Since the implemen-
tation needs to be correct only if the steps of P,_; and P, do not overlap, there
are two cases: either P, i is before P, or P, is before P, ;. In the former case,
Py,...,P, 2 and P,_; agree on a return value using the object O, and P, learns
this value simply by reading DEC, where the value is made available by P,,_1. In the
latter case, O' serves as the object that brings about agreement on the return value
among Py,..., P,_» and P,, and P,_; learns this value by reading DEC.

LEMMA 4.1. The implementation, shown in Figure 4.1, of the n-consensus object
O from (n — 1)-consensus objects and a register has the following properties:

1. O is wait-free.
2. O satisfies validity and agreement in all executions in which the access pro-
cedures at ports n —1 and n of O are not concurrent.

Proof. Part 1 is obvious. For Part 2, let £ be any execution of the implementation;
for each i € [1..n], let P; be the access procedure at port i of O that appears in £. (We
may assume, without loss of generality, that access procedures at all ports appear in
E: If there is any execution that violates validity or agreement, then there is also one
that violates validity or agreement, respectively, and involves the access procedures
at all ports.)

O satisfies validity: This follows easily by induction and the fact that the base
objects O and O' satisfy validity.

O satisfies agreement, if P,_; and P,, are not concurrent: Suppose P,_; and
P, are not concurrent in £. We observe that each of O and O’ satisfies
agreement. Let d and d’ denote the (unique) return values from O and O',
respectively, in €.

If the first of P,,_; and P, to read DEC finds that DEC # L, it is clear from
the implementation that some P;, i € [1..n — 2], had previously written d into
DEC. Since O and O' satisfy agreement, it is easy to see that, in this case, all
access procedures return d and so O satisfies agreement. If the first of P,
and P, to read DEC finds that DEC = 1, we consider two cases, depending
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0,0'": (n — 1)-consensus objects, initialized to L
GP, SP, DEC: registers, initialized to L

AppLyY(propose u,i,0); u € N, AppLy(propose u,n,0); u € N
i€l.n—1]
1. GP:= AppLY(propose u,i,0) SP:=u
2. if SP= 1 then if GP = 1 then
3. vote; := GP DEC:=u
4. else vote; .= SP else busy-wait until DEC # L
5. DEC := AppLY(propose vote;,i,0")
6. return DEC return DEC

Fi1G. 4.2. Group-Solo implementation of n-consensus object O from (n — 1)-consensus objects

on which of the two access procedures was executed first (recall that P,
and P, are not concurrent in &).

If P,_; was executed first, it is clear from the implementation that P,_;
writes d (the return value from O) in DEC and returns it. P,, which begins
after P,_; finishes, reads d from DEC and return it. Py,..., P, o propose
d to O'. Since O' satisfies validity, and d is the only value proposed to it, it

returns d to all, and all of Py,..., P,_> therefore return d. Thus, O satisfies
agreement.
If P,, was executed first, it is clear from the implementation that P;, ..., Pn_o

and P, return d' (the return value from O'). P, also writes d’ in DEC. P,,_,
which begins after P, finishes, reads d’' from DEC and returns it. Thus, O
satisfies agreement.

This completes the proof of the lemma. O

4.2. Group-Solo Implementation. Figure 4.2 shows an implementation of an
n-consensus object O from two (n—1)-consensus objects O and O, and three registers
GP, SP, and DEC. This implementation is wait-free for all ports except port n. It is
also wait-free for port n unless both of the following hold: (i) an operation is invoked
on a port other than n, and (ii) no such operation completes. (Note that since ports
1,...,n — 1 are wait-free, an operation that has been invoked on these ports can fail
to complete only because of a crash.)

We now informally describe how this implementation works. For i € [1..n], let
P; denote the access procedure at port i of O. Py,..., P, 1 act as one group, while
P, acts as a solo outsider. P, ..., P,_1 reach consensus on their initial proposals by
accessing O. Each P; in the group regards the response of O as the group’s proposal
for consensus with P,, and writes this value into register GP (see line 1). (GP and
SP are acronyms for “Group’s Proposal” and “Solo Proposal”, respectively, and DEC
stands for “Decision”.) P; then reads SP to check if the solo access procedure P,
has published its proposal yet. If SP is blank, P; attempts to promote the group’s
proposal as the consensus value between P,, and the group. Otherwise, P; attempts to
promote the value in SP (which is the proposal of the solo access procedure P,) as the
consensus value. Lines 2, 3 and 4 in which P; sets the local variable vote; to either GP
or SP implement this strategy. It is possible, however, that some access procedures in
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the group find S P blank and consequently promote the group’s proposal, while others
find in SP a nonblank value that they promote. To reconcile such differences, access
procedures in the group reach consensus on their votes by accessing O’. The response
of O' is regarded as the final outcome of consensus between P, and the group.

The solo access procedure P,, on the other hand, begins by publishing its proposal
in register SP. It then reads GP, the register where the group’s proposal is published.
If GP is blank, P, concludes that it is ahead of all access procedures in the group
and that access procedures in the group will all vote for its (P,’s) proposal. Thus,
P,, regards its proposal as the outcome of its consensus with the group. On the
other hand, if P, finds GP nonblank, then P, is uncertain of the views of the access
procedures in the group (because some members of the group might promote P,’s
proposal, while the others promote the group’s proposal). P, therefore blocks itself
until the consensus value is published in the register DEC by (some P; in) the group.

LeEMMA 4.2. The implementation, shown in Figure 4.2, of the n-consensus object
O from (n — 1)-consensus objects and registers has the following properties:

1. O satisfies validity and agreement.

2. O is wait-free for all ports except port n.

3. O is wait-free for port n in every execution where either no operation is applied
to other ports or an operation applied to some port returns a response.

Proof. For Part 1, let £ be any execution of the implementation; for each i € [1..n],
let P; denote the access procedure at port i of O that appears in £. (As in the proof
of Lemma 4.1 we may assume, without loss of generality, that access procedures at
all ports appear in £.)

O satisfies validity: This follows easily by induction and the fact that the base
objects O and O' satisfy validity.

O satisfies agreement: There are two cases, based on whether the if-condition
on line 2 of P, evaluates to true or to false. Below we consider these cases in
turn.

Suppose that the if-condition (in P,’s access procedure) evaluates to true.
Then, two facts are obvious from the implementation: (i) P, finished writing
its proposal u in SP before any of Py, ..., P,—1 completed line 1 of its access
procedure, and (ii) P, writes u in DEC and returns it. Fact (i) implies that,
for each ¢ € [l.n — 1], the if-condition on line 2 of P; evaluates to false,
thus causing P; to set vote; to u, the value in SP. Thus, all of Py,..., P,
propose u to O'; since O satisfies validity, O’ returns u to all. Thus, all of
Py, ..., P,_1 return u. Since P, also returns u, we have agreement.

Suppose that the if-condition in P, evaluates to false. Then, two facts are
obvious from the implementation: (i) P, waits until it reads a non-L value
in DEC and returns it, and (ii) the only writes performed on DEC are by
Py, ..., P,_1 on line 5, when they write the return value of O’ in DEC. Since
O’ satisfies validity and agreement, it returns the same non- L value, say d, to
all of Py,...,P,—1. Thus, each of Py, ..., P,_1 writes d in DEC and returns
it. P, eventually reads d in DEC and returns it. Hence we have agreement.

Parts 2 and 3 are obvious from the implementation. O

4.3. 1-Blocking Array Implementation. We now use the Group-Solo imple-
mentation of n-consensus to implement, for any constant ¢, an array O[l..c] of n-
consensus objects from (n — 1)-consensus objects and registers. To access the ith port
of the jth object in the array, where i € [1..n] and j € [1..¢], the implementation pro-
vides the access procedure APPLY(propose u, i, O[j]). The implementation guarantees



14 Chandra, Hadzilacos, Jayanti and Toueg

some nice properties, but only in certain restricted executions. The implementation
treats port n of the array elements differently from ports 1,...,n — 1 in two respects:
the restrictions it places on how the port may be used, and the wait-free properties
it guarantees for the port.

Specifically, the implementation imposes the following restriction for all ports
i € [1..n—1]: port i of two different array elements must not be accessed concurrently.
More precisely, the execution of access procedures at port ¢ of any two array elements
Olj] and O[k] must not be concurrent. Concurrent execution of access procedures at
port n of distinct array elements is, however, permitted.

In executions that satisfy the above restriction, the implementation satisfies valid-
ity and agreement and, in addition, guarantees the following two properties: (i) All of
O[1],...,0Olc] are wait-free for ports 1,...,n—1, and (ii) All but one of O[1],..., O]
are wait-free for port n. By Property (ii), if access procedures at port n of two dif-
ferent objects in the array are executing concurrently, they do not both block. This
property will be crucial to the proof of the generalized irreducibility theorem of the
next section.

Below we develop the ideas behind the implementation in two stages. In the first
stage, we propose an obvious implementation and point out its drawbacks. We fix
these drawbacks in the second stage.

Stage 1, Obvious Implementation: — Let GSi,..., GS. be n-consensus objects
implemented using the Group-Solo implementation of Figure 4.2. Access procedure
APPLY(propose u, i, O[j]) simply makes a call to APPLY(propose u,i, GS;).

The drawback is that this implementation fails to satisfy Property (ii), stated
above. To see this, consider an execution of APPLY(propose vy,i1,O[1]), for some
vy and 43 € [l.n — 1], up to the point where register GP of GS; has been written
but before register DEC of GS; has been written (see lines 1 and 5 in Figure 4.2).
Thus, port n of GS; is now blocked: an access procedure that invokes an operation
on port n of GS; will have to wait until register DEC of GS; is written (see the
busy-wait statement in Figure 4.2). Suppose that, at this point, the access procedure
APPLY(propose va,ia,O[2]), for some vy and iy € [l..n — 1] such that is # iy, is
executed, again up to the point where register GP of GS; has been written but before
register DEC of GSs has been written. Thus, port n of GS; is now blocked as well.
If access procedures are now called at port n of O[1] and O[2], they will both have to
wait indefinitely, violating Property (ii).

Stage 2, Refined Implementation: =~ We observe that the failure of the above
implementation to satisfy Property (ii) is due to the fact that it permits port n of
more than one GS object to become blocked. We now describe a mechanism which
ensures that, at all times, port n of at most one GS object can be blocked. The basic
idea is as follows: When an access procedure P wants to apply propose u at port
i € [1..n — 1] of OJj], as in the obvious implementation P applies propose u at port i
of GS;, but it does so only after completing any propose operations that have already
been initiated by other access procedures at ports 1,...,n—10of GSi,..., GS.. In this
way, before P accesses GS; to perform its own operation (thereby potentially causing
port n of that object to become blocked) it ensures that port n of every other object
is not blocked.

This idea is implemented as follows. We use (n — 1)-consensus objects Oy, ..., O,
(in addition to GSi,..., GS.). When an access procedure P wants to apply an op-
eration propose u at a port i € [1..n — 1] of O[j], P seeks to “obtain permission” to
apply propose u at port ¢ of GS;. To obtain this permission, P accesses Oy, ..., O,
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O1,...,0.: (n — 1)-consensus objects, initialized to L
GSi, - .., GS,: n-consensus objects, implemented from (n — 1)-consensus objects and
registers using the Group-Solo implementation in Figure 4.2

AppLY(propose u,i,0[j]); v € N,j € [L..c] AppLY(propose u,n,O[j]); u € N,
i€l.n—1] JjEe[l.(]

(:=1 res := APPLY(propose u,n, GS;)
repeat return res

(k,v) := APPLY(propose (j,u),i,0y)

res := APPLY(propose v,i, GSy)

{:=0+1
until j = &
return res

F1G. 4.3. Implementation of 1-blocking array O[l..c] of n-consensus objects from (n — 1)-
consensus objects

in that order, as described below. P proposes the tuple (j,u) to O;.> Let (k,v) be
O1’s response. There are two cases: j # k or j = k. Below, we handle the two cases
in turn.

If j # k, it means that some access procedure has already obtained permission
(from Oy) to apply propose v to GSj, (at one of its first n — 1 ports). This operation
on GS; may not have completed, and thus it is possible that port n of GSy is blocked.
P therefore helps complete that operation by applying propose v on GSi. P then
accesses O, for permission to apply propose u on GS;. It does this by proposing (j, u)
to Oy, and proceeds as above.

If j = k, it means that P has the permission to apply a propose operation to
GS;. At this point, P can propose either u or v (u is justified since it is P’s proposal
to O[j] and v is justified since some access procedure wants to propose it to O[j]).
In our implementation, P proposes v to G'Sj, and regards the response of GS; as the
response of O[j] to its propose u operation.

LEMMA 4.3. Consider the implementation of array O[1..c] of n-consensus objects,
shown in Figure 4.3. Let £ be any execution of this implementation that satisfies the
following property:

(A) For all ports i € [1.n — 1] and all j,j' € [L..c] such that j # j', the access

procedures at port i of O[] and port i of O[j'] are not concurrent in &.
Then, the following hold in &:
1. All of O[1],...,0|c] are wait-free for ports 1,...,n — 1.
2. All but one of O[1],...,0|c] are wait-free for port n.
3. All of O[1],...,0O|c] satisfy validity and agreement.

Proof. We prove the lemma, through a series of claims. The first two claims state
that the base objects are accessed as required to ensure they behave properly. As a
result, these objects satisfy their safety and liveness properties.

CrLAmM 4.3.1. For each i € [l.n — 1] and € € [l..c] there are no concurrent
operations applied to port i of Oy in &.

5Strictly speaking it is natural numbers, and not pairs of natural numbers, that can be proposed
to consensus objects. It is well-known, however, that pairs of natural number can be “coded” by
natural numbers, so this is not a problem.
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Proof of Claim 4.3.1. The claim follows immediately from the following two
facts: (i) port ¢ of O, is accessed only by access procedures invoked at port i of
O[1],...,0]c], and (ii) by (A), access procedures at port i of different objects O[j]
and O[j'] are not concurrent. O cjaim 4.3.1

CramM 4.3.2. For eachi € [1..n] and k € [1..c|, there are no concurrent operations
applied to port i of GSi in &.

Proof of Claim 4.3.2. For i € [1..n—1] the claim is immediate from the following
two facts: (i) port 7 of GSy is accessed only by access procedures invoked at port 4
of O[1],...,0]c], and (ii) by (A), access procedures are not executed concurrently
at port ¢ of different objects O[j] and O[j']. For i = n, the claim follows from the
observation that port n of GSj, is accessed only by the access procedure at port n of
O[k] O Claim 4.3.2

Notice that each proposal to (and hence each response of) Oy is of the form (j, u).
The next claim states that the first components of the responses returned by different
objects among Oq,...,0O,. are different.

Cram 4.3.3. Let (j,u) and (j',u’) be the values returned by operations applied
to objects Oy and Op. If L £ L' then j # j'.

Proof of Claim 4.3.3. Suppose £ # {'. Without loss of generality, we can assume
that ¢/ < ¢. By Claim 4.3.1, O, satisfies validity and so some access procedure P
proposed (j,u) to Oy. By the implementation it is clear that P is an access procedure
of the form APPLY (propose u,*, O[j]).5 An inspection of this access procedure shows
that, before P proposed (j,u) to Oy, it proposed (j,u) to Oy and received a response
(k,v) where k # j. By Claim 4.3.1, Oy satisfies agreement, and so (k,v) = (j',u').
Therefore, j # j', as wanted. O claim 4.3.3

CramM 4.3.4. For each i € [1.n — 1] and j € [1..c], O[j] is wait-free for port i in
E.

Proof of Claim 4.3.4. For each ¢ € [l..c], O; is wait-free for port i since,
by Claim 4.3.1, it is accessed properly. By Part 2 of Lemma 4.2, GS; is wait-
free for port i. Thus, it remains to show that the repeat loop of access procedure
APPLY(propose u,i,O[j]) in Figure 4.3 terminates. If that loop does not terminate
after £ iterations, then the propose operations applied to Oy, . .., O return pairs whose
first components are different from each other (by Claim 4.3.3) and from j. Recall
that the first components of propose operations applied to Oy, ..., O, are integers in
[1..c], and that these objects satisfy validity since, by Claim 4.3.1, they are accessed
properly. Therefore, the loop terminates after at most ¢ iterations. O ciaim 4.3.4

Cram 4.3.5. All but one of O[1],...,0O|c] are wait-free for port n in E.

Proof of Claim 4.3.5.  Suppose, for contradiction, that there exist k, k' € [1..c]
such that k¥ # k' and neither of O[k], O[k'] is wait-free for port n in £. It follows
that neither of GSy, GSy is wait-free for port n in £. By Part 3 of Lemma 4.2, the
following holds for both GS; and GSi in £: An operation has been applied to some
port other than n and no operation applied to any port returns a response.

Let P, and Py denote access procedures that applied, respectively, an operation
to a port other than n of GSy and GSy . From the implementation, it is clear that
P, obtained a response of (k, x) from some O, (otherwise P, would not have applied
an operation to GSi). Similarly, Py obtained a response of (k',*) from some Oy.
Since the responses of Oy and Oy to Py, and Py, respectively, are different (recall that
k # k'), and since each of O, and Oy satisfies agreement (recall that, by Claim 4.3.1,

6We use a * to denote a quantity whose value is immaterial for the argument at hand.
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these objects are accessed properly), it follows that ¢ # £'. Without loss of generality,
assume ¢ < (. From the implementation it is clear that P accessed Oy before
accessing Oy. Since Oy satisfies agreement, its response to P, was (k',*). It is
again clear from the implementation that upon obtaining this response Py invoked an
operation APPLY(propose *,*, GSy) and received the corresponding response before
proceeding to access O 41. But this contradicts the fact that no operation applied
to any port of GSy returns a response. 0 c1aim 4.3.5

CramM 4.3.6. For each j € [1..c], O[j] satisfies validity and agreement in £.

Proof of Claim 4.3.6. We observe that the value returned in £ by any of
O[j]’s access procedures (namely, APPLY(propose *,*,(O[j])) is a response received
from GS;. By Claim 4.3.2 and Lemma 4.2, GS; satisfies agreement in £. Therefore,
OJj] also satisfies agreement in £.

Consider any access procedure P of O[j] that returns v in £. To prove that O[j]
satisfies validity in £ it suffices to show that some access procedure proposed v to
Olj]. Since P returns v, it is clear from the implementation that GS; returned v to
P. By Claim 4.3.2 and Lemma 4.2, GS; satisfies validity in £. Thus, v was proposed
to GS; by some access procedure P’. By the implementation, this implies that one of
the following two cases applies:

(i) P’ is the access procedure APPLY(propose v,n,O[j]), and proposes v to GS;.
(ii) P’ is an access procedure APPLY(propose *,i',O[j']), for some i’ € [1..n — 1]
and j' € [1..¢], and proposes v to GS; after receiving (j,v) from some object Oy.
This means that some access procedure P" proposed (j,v) to Oy, and so P is
an access procedure APPLY (propose v, *, O[j]).
In either case, some access procedure proposed v to O[j], as wanted. O claim 4.3.6

The three parts of Lemma 4.3 are immediate from Claims 4.3.4, 4.3.5, and 4.3.6,
respectively. O

5. Generalized Irreducibility Theorem for Consensus. In this section, we
prove the generalized irreducibility theorem for consensus, stated as follows. For all
n > 2 and all sets S of types that include register, if there is a wait-free implementa-
tion of an n-consensus object from (n— 1)-consensus objects and objects of types in S,
then there is a wait-free implementation of an n-consensus object just from objects of
types in S. In other words, the base (n — 1)-consensus objects can be eliminated from
the implementation. Thus, (n — 1)-consensus objects are not necessary to implement
a wait-free n-consensus object, regardless of the base objects that are available for
such an implementation.

We obtain this result by repeated application of a lemma stating that if n-
consensus objects are helpful in implementing (n + 1)-consensus objects, then (n —1)-
consensus objects are helpful in implementing n-consensus objects.

LEMMA 5.1. For alln > 2 and all sets S of types that include register, if there
is a wait-free implementation of an (n+ 1)-consensus object from n-consensus objects
and objects of types in S, then there is a wait-free implementation of an n-consensus
object from (n — 1)-consensus objects and objects of types in S.

Proof. Consider a wait-free implementation of an (n+ 1)-consensus object O from
n-consensus objects and objects of types in S. By Ko6nig’s lemma, the number of base
objects of O is finite [2].7

Consider any n-consensus base object O of O. By Lemma 3.2, we can assume
that the binding of O with O is one-to-one static. Since O has n + 1 ports and O has

Tt is here that we make use of the assumption that types exhibit finite nondeterminism.
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n ports, some port of O, say p, does not use any port of O. Let iy,42,...,i, be the

remaining ports of O (i.e., the elements of [1..n 4+ 1] — {p}) listed in ascending order.

We may assume without loss of generality (by renaming ports of O, if necessary) that

ports iy,i4s,...,4, of O are bound, respectively, to ports 1,2,...,n of O. We may

therefore classify the base objects of O into four categories:

(a) Ay,...,A, are the n-consensus base objects that are not accessed by port n+1 of
O. Thus, ports n — 1 and n of Ay,..., A, are bound, respectively, to ports n — 1
and n of O.

(b) By, ..., By are the n-consensus base objects that are not accessed by port n of O.
Thus, ports n — 1 and n of By,..., B, are bound, respectively, to ports n — 1 and
n+1of O.

(c) C4,...,C, are the n-consensus base objects that are not accessed by one of the
first n—1 ports of O. Thus, portsn—1and n of C4, ..., C, are bound, respectively,
to ports n and n + 1 of O.

(d) Dq,..., D4 are the remaining base objects of O (these belong to the types in S).
Modify the implementation of O as follows:

e Replace the base objects Ay,..., A, and By, ..., B, with a 1-blocking array
O[l..a + b], implemented as in Figure 4.3. Objects OJl..a] of the array are
used in the place of A;,..., A, and Ola + 1..a + b] are used in the place of
By,...,By.

e Replace the base objects C4,...,C, with NCi,..., NC., where each NC; is
implemented using the nonconcurrent implementation in Figure 4.1.

e The access procedures of the new implementation are the same as in the
original implementation with the following exception: Each time any access
procedure APPLY(propose *,%, () applies, in the original implementation, a
propose u operation to port ¢ of A;, Bj;, or Cj, the new implementation
requires the access procedure instead to apply propose u to port i of O[],
Ola + j], or NCj, respectively.

CrLAm 5.1.1. The (n+1)-consensus object O in the new implementation described
above has the following properties:

1. All base consensus objects of O are (n — 1)-consensus objects and all other
base objects of O belong to types in S.

2. O satisfies validity and agreement in all executions in which operations are
not executed concurrently at ports n — 1 and n of NC;, for all i € [1..c].

3. O is wait-free for ports 1,...,n — 1.

4. O is wait-free for one of ports n and n + 1.

Proof of Claim 5.1.1. Part 1 follows from the fact that O[l..a + b] and
NCi,...,NC. are implemented from (n—1)-consensus objects and registers, the latter
being in S by assumption.

To prove Part 2, consider any execution & of the new implementation of O in
which operations are not executed concurrently at ports n — 1 and n of any NC;,
i € [1..c]. The following three facts imply that O satisfies validity and agreement in
E:

e The original implementation of O satisfies validity and agreement in all exe-

cutions.
e By Part 3 of Lemma 4.3, O[1],...,O[a + b] (which have replaced Ay,..., A,
and By, ..., By of the original implementation) satisfy validity and agreement

in all executions that satisfy the following proviso: there are no concurrent
invocations at the same port p € [1..n — 1] of two distinct objects O[j] and



Generalized irreducibility of consensus 19

Olk], where j, k € [1..a+b]. This proviso is satisfied in £ because (i) the first
n — 1 ports of each object O[1],...,Ola+ b] are bound to the first n — 1 ports
of O, respectively; and (ii) in the original implementation of O, no access
procedure invokes concurrent operations on distinct base objects — and, in
particular, on the n-consensus base objects Aq,...,A, and By,..., By that
were replaced by O[1],...,O[a + b].

e By Part 2 of Lemma 4.1, NC}, ..., NC, (which have replaced C,...,C. of
the original implementation) satisfy validity and agreement in €.

Part 3 follows from the following facts: (i) NC\,..., NC. are wait-free (by Part 1
of Lemma 4.1), and (ii) O[1],...,0[a + b] are wait-free for ports 1,...,n — 1 (by
Part 1 of Lemma 4.3), and (iii) none of the first n — 1 ports of O use port n of any of
O[1],...,0[a + b).

Part 4 follows from the following facts: (i) all but one of O[1],...,0Ola + b] are
wait-free for port n (by Part 2 of Lemma 4.3), and (ii) port n of each of O[1],...,O[a]
is used only by port n of O, and port n of each of Ofa + 1],...,O[a + ] is used only
by port n+ 1 of O (thus, port n of each O[] is used either by port n of O or by port
n + 1 of O, but not by both). O cjaim 5.1.1

Next we describe how to transform the new implementation of O, the (n + 1)-
consensus object satisfying the properties in Claim 5.1.1, into an implementation of
an n-consensus object O'. Informally, the access procedure for each of the first n — 1
ports of @' simply calls the access procedure at the corresponding port of @ and
returns that procedure’s response. For port n, the access procedure of O’ executes
the access procedures of both port n and n + 1 of O, alternating between the two in
such a manner that one of them is guaranteed to terminate and return a value; that
value then becomes the response of the access procedure of port n of O'.

To explain more precisely how ' works, we need to make some observations and
introduce some terminology. Recall (see Figure 4.3) that to propose a value to port
n of an object O[j] in a 1-blocking array, we simply propose the same value to port n
of an object G'S; in the group-solo implementation. If, in some execution, the latter
enters the busy-wait statement (see Figure 4.2), we say that object O[j] is blocked.

Here now, is how the access procedure APPLY(propose u,i, O') works:

e Foralli € [1.n—1], APPLY(propose u,i, ') executes APPLY(propose u,i, O).

e APPLY(propose u,n,(0'), the access procedure at port n of (', interleaves
the execution of APPLY(propose u,n,Q) and ApPLY(propose u,n + 1,0),
using the rules below. For convenience, we let PROC, and PROC,y; de-
note APPLY(propose u,n, Q) and APPLY(propose u,n + 1,0), respectively.
Note that, by construction of O, PROC, applies operations to port n of
O[1],...,0][a] (as well as to port n — 1 of NCi,...,NC., and possibly to
ports of Dy,...,Dy). Similarly, PROC,4+1 applies operations to port n of
Ola+1],...,0[a + b] (as well as to port n of NCi,..., NC., and possibly to
ports of Dy,...,Dy).

(a) Begin by executing PROC,,.

(b) Suspend PROC,, and resume PROC,+1 if and only if PROC,, accesses an
object O[j] that is blocked (for some j € [l..a]). Similarly, suspend
PROC,,4+1 and resume PROC, if and only if PROC, 1 accesses an object
Ola + j] that is blocked (for some j € [1..D]).

(¢) As soon as either PROC,, or PROC, 41 terminates and returns some value
v, terminate APPLY(propose u,n,O') and return v.

CrAM 5.1.2. The n-consensus object O, in the implementation described above,
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has the following properties:
1. All base consensus objects of O' are (n — 1)-consensus objects, and all other
base objects belong to types in S.
2. O satisfies validity and agreement.
3. O is wait-free.

Proof of Claim 5.1.2. Part 1 follows directly from Part 1 of Claim 5.1.1.

Each access procedure of @’ merely returns the value of a corresponding access
procedure of O. By Part 2 of Claim 5.1.1, O satisfies validity and agreement as long as
there are no concurrent operations at ports n—1 and n of each NC;, for i € [1..c]. Thus,
to prove Part 2 of the present claim, it suffices to prove that the access procedures
of @' do not apply concurrent operations to ports n — 1 and n of NC;, for every
i € [1..c]. To see why this is the case recall that ports n — 1 and n of each NC; are
accessed only by PROC,, and PROC, 41, respectively. By construction of @', only the
access procedure of port n of O’ executes PROC,, and PROCp+1. Furthermore, while
the access procedure of port n of @' is executing one of PROC,, or PROCp1, it has
suspended execution of the other. Therefore, no concurrent operations are executed
at ports n — 1 and n of NC;, as wanted.

Part 3 of Claim 5.1.1 implies that (0’ is wait-free for ports 1,...,n—1, and Part 4
of Claim 5.1.1 implies that O is wait-free for port n. Thus, O’ is wait-free for all its
n ports. O claim 5.1.2

This completes the proof of Lemma 5.1. O

THEOREM 5.2 (Generalized Irreducibility Theorem for Consensus). For alln > 2
and all sets S of types that include register, if there is a wait-free implementation of
an n-consensus object from (n — 1)-consensus objects and objects of types in S, then
there is a wait-free implementation of an n-consensus object from objects of types in
S.

Proof. Suppose there is a wait-free implementation of an n-consensus object from
(n—1)-consensus objects and objects of types in S. By repeated application of Lemma
5.1 we have that for all & € [2..n], there is a wait-free implementation of a k-consensus
object from (k — 1)-consensus objects and objects of types in S. Composing all these
implementations, we obtain a wait-free implementation of an n-consensus object from
1-consensus objects and objects of types in S. Since 1-consensus objects have a trivial
implementation,® we have a wait-free implementation of an n-consensus object from
objects of types in §. O

6. Equivalence of t-Resilient and Wait-Free Implementations of Con-
sensus. In this section, we prove that the three versions of fault-tolerant consensus—
wait-free consensus, weak t-tolerant consensus, and strong t-tolerant consensus—are
equivalent: if any of them can be implementended from certain types of shared ob-
jects, the other two can also be implemented from the same types of shared objects.
More precisely:

THEOREM 6.1 (Equivalence of ¢-Resilient and Wait-Free Consensus). For all
n >t > 2 and all sets S of types that include register, the following three statements
are equivalent:

S1. There is an implementation of a weakly t-resilient n-consensus object from

objects of types in S.
S2. There is a wait-free implementation of a (t+ 1)-consensus object from objects
of types in S.

8 A propose u operation on a 1-consensus object simply returns u.
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S8. There is an implementation of a strongly t-resilient n-consensus object from
objects of types in S.

We prove the theorem by showing that S1 implies S2, S2 implies S3, and S3
implies S1. As we will see, the Generalized Irreducibility Theorem of the previous
section is used to prove the first of these three claims.

LEMMA 6.2. S1 implies S2, where statements S1 and S2 are as in Theorem 6.1.

Proof. Let O be a t-resilient implementation of an n-consensus object from objects
of types in S. Using O (and a few other base objects) we implement a wait-free (¢+1)-
consensus object O'. Roughly speaking, the access procedures of O’ coordinate with
each other to simulate an execution of . The simulation is done in such a way that
each access procedure of O’ that crashes can prevent at most one access procedure
of O in the simulated execution from making progress. Thus, if access procedures
in at most ¢ ports of O’ crash then access procedures of at most ¢ ports of O will
stop making progress in the simulated execution. Since O is t-resilient, the access
procedures in the remaining n — ¢ ports of O eventually terminate and return the
same value. This value is adopted as the return value of O'.

We implement the above idea as follows:

e We employ registers Uy, ...,U, and Ry, ..., R,. For each i € [1..n], U; stores
the value proposed at port ¢ of O, and R; stores the current state of that
port’s access procedure. (The state of an access procedure consists of the
values of all its private variables and of its “program counter”.)

e We employ (t+1)-ported test&set objects TSy, ..., T'S,. (The test&set object
type has two states—win and lose—and supports two operations: test&set
and reset. The test&set operation returns the current state of the object,
and sets the state to lose. The reset sets the state to win, and returns an
acknowledgement as a response.)

We use T'S; to ensure that at any time at most one of O'’s access procedures
simulates steps of the access procedure at port j of O.

e For brevity, let P; denote the access procedure APPLY(propose u,i,0'), for
each i € [1..t + 1]. P; considers the n ports of O in round-robin fashion.
When P; considers port j of O, it applies a test&set operation to T'S;. If TS;
returns lose, P; moves on to consider the next port of O, ((j+1) mod n)+1.
If T'S; returns win, P; advances the simulation of the access procedure at port
j of O by performing the following actions:

(1) P, reads R; to determine the current state of that procedure.

(2) If no step of port j has been simulated before, P; writes its proposal u
into Uj, and sets R; to the initial state of APPLY(propose Uj, j, O).

(3) P; performs a single step of APPLY(propose Uj,j,O) and writes the
resulting state of that procedure in R;.

(4) P; performs a reset operation on TS; (so that some Py, i’ € [1..t + 1],
may execute the next step of the access procedure at O’s port j).

(5) If the step that P; simulated caused the access procedure of port j of O
to terminate and return v, P; writes v in a register DEC and terminates;
otherwise, P; moves on to consider the next port of O.

The implementation of ', described informally above, is shown in Figure 6.1.
The following claim states the desired properties of O'.

CramMm 6.2.1. The (t + 1)-consensus object O', shown in Figure 6.1, satisfies
validity and agreement, and is wait-free.

Proof of Claim 6.2.1.  Let £ be an arbitrary concurrent execution of O'’s access
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O: t-resilient implementation of n-consensus object, initialized to L
TS, ..., TSy: (t+ 1)-ported test&set objects, initialized to win
Ry,..., R,: registers, initialized to L

Ui,...,U,: registers, initialized arbitrarily

DEC: register, initialized to L

APPLY (propose u,i,0"); u € N,i € [1..t + 1]

L. ji=1
2. repeat

3. if AppLy(test&set,i, TS;) = win then

4. read R; to determine the state of PROC;

3. if R; = 1 then

6. Uj =u

7. R; := initial state of APPLY(propose Uj, j,O)

8. execute one step of APpPLY(propose Uj, j, O)

9. write in R; the new state of APPLY(propose Uj,j, O)

10. if AppLY(propose Uj, j, O) terminated and returned v then DEC :=v
11. Appry(reset,i,T'S;)

12. if DEC # 1 then return DEC

13. j:==((G+1) modn)+1

14. forever

F1G. 6.1. Wait-free implementation of a (t + 1)-consensus object O’ from t-resilient implemen-
tation of n-consensus object O

procedures, and let £ be the subexecution of £’ consisting of the operations applied to
O (see line 8 in Figure 6.1). Thus € is a concurrent execution of s access procedures.
To prove the claim it suffices to show that O’ satisfies validity and agreement, and is
wait-free in £'.

It is clear from the implementation that the values returned by access procedures
of @ in &' are values returned by access procedures of O in £. In addition, any
value proposed by an access procedure of O in £ is a value proposed by some access
procedure of O in & (see line 6). From these two observations, and the fact that O
satisfies validity and agreement in &, it follows that O’ satisfies validity and agreement
in £'.

It remains to show that O’ is wait-free in £’. Suppose, for contradiction, that
there is an access procedure, say P, of O that is infinite in £'. For i € [1..t + 1] let P;
denote the access procedure at port ¢ of O’ in &', and for j € [1..n] let (); denote the
access procedure at port j of O in £&. We make a subclaim that, for each finite Q;
in £ (j € [1..n]), there is a P; (i € [1..t + 1]) such that P; applies only finitely many
operations to T.S; in &', the last of which is a test&set that returns win. We prove
this subclaim by contradiction: suppose that every P; that receives win from TS; at
line 3 subsequently resets it at line 11. Then, since P applies infinitely many test& set
operations to T'S; in &', there would be infinitely many test&set operations to T'S;
that return win in £'. As a result, either infinitely many steps of (); are performed in
€ or (); completes in £ and returns some response v. The former case contradicts the
premise that (); is finite in £. In the latter case, whichever P simulated the last step
of Q; would write v in DEC (at line 10) before resetting TS;. After this writing in
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DEC, when P reads DEC at line 12, it finds v in DEC and therefore completes, which
contradicts the premise that P is infinite. This completes the proof of the subclaim.
It is clear from Figure 6.1 that if ); and @; are distinct access procedures of O
that are finite in £, then the corresponding access procedures of O that executed the
last test&set operation on T'S; and TSj, respectively, are also distinct. Thus, it is
immediate from the subclaim that if at most m of P, P, ..., P41 are finite, then at
most m of Q1,...,Q, are finite. Since, by our supposition, P is infinite (and P is one
of P,...,Pi11), it follows that at most ¢t of @1, ...,Q, are finite, which implies that
at least n — t of Q1,...,Q, are infinite. This conclusion contradicts the fact that O
is t-resilient. Hence, we conclude that O is wait-free in £’. O Glaim 6.2.1

Afek, Weisberger, and Weisman showed that there is a wait-free implementation
of a k-ported test&set object from 2-consensus objects and registers, for all k£ > 2 [1].
This, together with Claim 6.2.1, implies:

CLAaM 6.2.2. There is a wait-free implementation of a (t + 1)-consensus object
from 2-consensus objects and objects of types in S.

We now have all the ingredients needed to complete the proof of Lemma 6.2. Since
t > 2, Claim 6.2.2 implies that there is a wait-free implementation of a (t41)-consensus
object from ¢-consensus objects and objects of types in S. This, together with Theo-
rem 5.2, implies that there is a wait-free implementation of a (¢ 4+ 1)-consensus object
from just objects of types in S§. This completes the proof of Lemma 6.2. O

The next lemma has a similar proof, so we only provide an informal sketch.

LEMMA 6.3. S2 implies S8, where statements S2 and S3 are as in Theorem 6.1.

Proof. The proof is based on a simulation of a strong ¢-resilient n-consensus object
O' using a wait-free (t+1)-consensus object O. This simulation is similar to that in the
proof of Lemma 6.2 (see Figure 6.1). The only difference is that now a larger number
n of access procedures simulate the steps of a wait-free implementation for a smaller
number ¢+ 1 of access procedures (in Figure 6.1 it is the other way around: a smaller
number ¢ + 1 of access procedures simulate the steps of a t-resilient implementation
for a larger number n of access procedures). In this way, even if only a few access
procedures of the ¢-resilient implementation are active, they will nevertheless simulate
an execution of the wait-free implementation and reach a decision that satisfies validity
and agreement. As before, the simulation uses a register DEC (to publish the decision
value) and test&set objects to ensure that the simulation is done correctly. (One
test&set object is used at each port i of O to ensure that at most one access procedure
of O' simulates port i of O at any time).

The above argument shows that a strong t-resilient n-consensus object O’ can
be simulated using a wait-free (¢ + 1)-consensus object O, t + 1 n-ported test&set
objects and the register DEC. We show next that the test&set objects can be elimi-
nated from the simulation. As mentioned earlier, an n-ported test&set object can be
implemented wait-free from 2-consensus objects and registers [1]. Since ¢t > 2, it fol-
lows that n-ported test&set objects used in the simulation can be substituted by their
implementations from (¢ 4 1)-consensus objects and registers. With this substitution,
we have a simulation of a strong t-resilient n-consensus object O from registers and a
set of wait-free (¢4 1)-consensus objects. By the premise of the lemma (i.e., Statement
S2), we have that (1) a wait-free (¢ + 1)-consensus object can be implemented from
objects that belong to the types in S, and (2) S includes the register type. It follows
that a strong t-resilient n-consensus object can be simulated using only objects whose
types are in S. O

The next lemma trivially holds since strong t-resilience implies weak ¢-resilience.
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LEMMA 6.4. S8 implies S1, where statements S2 and S1 are as in Theorem 6.1.

Theorem 6.1 is immediate from Lemmata 6.2, 6.3, and 6.4.

Notice that the equivalence of statements S1, S2 and S3 in the theorem is proved
for ¢ > 2. As shown by Lo and Hadzilacos, the implication S1 = S2 breaks
down for ¢ =1 [21]. The other implications, however, continue to hold for t = 1: S2
implies S3 (the proof is the same as in Lemma 6.3) and S3 implies both S1 and S2
(by definition).

Finally, we present some corollaries of the equivalence theorem. Herlihy proved
that there is no wait-free implementation of 3-consensus from objects belonging to any
of the following sets of types [12]: {queue,register}, {stack,register},
{fetch&add,register}, {swap,register}. (Here, the types register, queue, stack,
fetch&add and swap can have any number of ports; the impossibility result holds
regardless.) This, together with Theorem 6.1, implies:

COROLLARY 6.5. For all n > 3, there is no 2-resilient implementation of an n-
consensus object from objects belonging to any of the following sets of types:
{queue, register}, {stack,register}, {fetch&add, register}, {swap,register}.

Consider a MEM(m) object that corresponds to Herlihy’s m-register assignment
memory [12]. Informally, MEM(m) consists of an infinite array of cells; it supports the
read i operation, which returns the value in the ith cell, and the write(iy,v1,. .., im,vm)
operation, which (atomically) writes v; in cell i;, for all j € [1..m]. For m > 2, Herlihy
proved that there is no wait-free implementation of (2m — 1)-consensus object from
MEM(m) objects (regardless of the number of ports the MEM(m) objects may have).
This, together with Theorem 6.1, implies:

COROLLARY 6.6. For all m > 2 and n > 2m — 1, there is no (2m — 2)-resilient
implementation of an n-consensus object from MEM(m) objects.
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