6.852 Lecture 8

- Finish up formal model
 - fairness
 - composition
- Basic asynchronous network algorithms
- Reading: Chapters 8 (continued), 14, 15
- Next lecture: Finish Chapter 15.
Last lecture

- Defined I/O automaton model
 - $\text{sig}(A)$: input, output, internal actions
 - $\text{states}(A)$ (typically defined by state variables)
 - $\text{start}(A) \subseteq \text{states}(A)$
 - $\text{trans}(A) \subseteq \text{states}(A) \times \text{acts}(A) \times \text{states}(A)$ (“steps”)
 - typically defined using precondition-effect form
 - $\text{tasks}(A)$: fairness partition (must be countable)
 - defined executions, traces

- Hierarchical proofs and simulation relations
 - automata as specs: prove one automaton implements another

- Safety and liveness properties
Fairness

- Task (set of actions) corresponds to “thread of control”
 - used to define “fair” executions
 - a “thread” that is continuously enabled gets to take a step
 - needed to prove liveness
- Formally, an execution α is **fair** to $C \in \text{tasks (A)}$ if:
 - α is finite and C is not enabled in final state
 - α is infinite and either
 - infinitely many events in C occur in α; or
 - C is not enabled in infinitely many states in α
Specifications

• Trace property: Problem specification
 - (sig(P), traces(P))

• Automaton A satisfies trace property P if
 - extsig(A) = sig(P) and traces(A) \(\subseteq \) traces(P)
 - extsig(A) = sig(P) and fairtraces(A) \(\subseteq \) traces(P)

• Automata as specifications
 - (extsig(A), traces(A))
 • use simulation relations to prove
 - (extsig(A), fairtraces(A))
Safety and liveness

- **Safety** property: “bad” thing doesn't happen
 - nonempty (null trace is always safe)
 - prefix-closed: every prefix of a safe trace is safe
 - limit-closed: limit of sequence of safe traces is safe

- **Liveness** property: “good” thing happens eventually
 - every finite sequence over acts(P) has an extension (is a prefix) of some sequence in traces(P)
 - “it's never too late”

- Every trace property is intersection of a safety and a liveness property.
- Every (closed) safety property can be specified as automaton.
Composition: Asynchronous network

Composition as a network of processes:

- p_1:
 - $\text{init}(v)_1$
 - $\text{decide}(v)_1$
 - $\text{send}(m)_{1,2}$
 - $\text{receive}(m)_{2,1}$

- p_2:
 - $\text{receive}(m)_{1,2}$
 - $\text{send}(m)_{2,1}$

Composition components:

- $C_{1,2}$
- $C_{2,1}$
Composition

• “Put multiple automata together”
 – output actions of one may be input actions of others
• Look first at composing two automata
 – generalize to composing infinitely many automata (in book)
• Recall:
 – \(\text{sig}(A) = (\text{in}(A), \text{out}(A), \text{int}(A)) \)
 – \(\text{local}(A) = \text{out}(A) \cup \text{int}(A) \)
• Two automata A and B are compatible if
 – \(\text{local}(A) \) and \(\text{local}(B) \) are disjoint
 – \(\text{int}(A) \) and \(\text{acts}(B) \) are disjoint
 – \(\text{int}(B) \) and \(\text{acts}(A) \) are disjoint
Composition

- $A \times B$, composition of A and B
 - $\text{int}(A \times B) = \text{int}(A) \cup \text{int}(B)$
 - $\text{out}(A \times B) = \text{out}(A) \cup \text{out}(B)$
 - $\text{in}(A \times B) = \text{in}(A) \cup \text{in}(B) - (\text{out}(A) \cup \text{out}(B))$
 - $\text{states}(A \times B) = \text{states}(A) \times \text{states}(B)$
 - $\text{start}(A \times B) = \text{start}(A) \times \text{start}(B)$
 - $\text{trans}(A \times B)$: includes (s, π, s') iff
 - $(s_A, \pi, s'_A) \in \text{trans}(A)$ if $\pi \in \text{acts}(A)$; $s_A = s'_A$ otherwise
 - $(s_B, \pi, s'_B) \in \text{trans}(B)$ if $\pi \in \text{acts}(B)$; $s_B = s'_B$ otherwise
 - $\text{tasks}(A \times B) = \text{tasks}(A) \cup \text{tasks}(B)$
- $\prod_{i \in I} A_i$, composition of $\{ A_i : i \in I \}$ (I countable)
Composition: Basic results

- Projection
 - execution of composition “looks good” to each component
- Pasting
 - if execution “looks good” to each component, it is good.
- Substitutability
 - can replace a component with one that implements it
Composition: Basic results

- **Projection**
 - If $\alpha \in \text{execs}(\prod A_i)$ then $\alpha|A_i \in \text{execs}(A_i)$ for all i.
 - If $\beta \in \text{traces}(\prod A_i)$ then $\beta|A_i \in \text{traces}(A_i)$ for all i.
 - If $\alpha \in \text{fairexecs}(\prod A_i)$ then $\alpha|A_i \in \text{fairexecs}(A_i)$ for all i.
 - If $\beta \in \text{fairtraces}(\prod A_i)$ then $\beta|A_i \in \text{fairtraces}(A_i)$ for all i.
Composition: Basic results

- **Pasting**
 - Suppose β is a sequence of external actions of $\prod A_i$.
 - If $\alpha_i \in \text{execs}(A_i)$ and $\beta|A_i = \text{trace}(\alpha_i)$ for all i then there is an execution α of $\prod A_i$ such that $\beta = \text{trace}(\alpha)$ and $\alpha_i = \alpha|A_i$ for all i.
 - If $\alpha_i \in \text{fairexecs}(A_i)$ and $\beta|A_i = \text{trace}(\alpha_i)$ for all i then there is a fair execution α of $\prod A_i$ such that $\beta = \text{trace}(\alpha)$ and $\alpha_i = \alpha|A_i$ for all i.
 - If $\beta|A_i \in \text{traces}(A_i)$ for all i then $\beta \in \text{traces}(\prod A_i)$.
 - If $\beta|A_i \in \text{fairtraces}(A_i)$ for all i then $\beta \in \text{fairtraces}(\prod A_i)$.
Composition: Basic results

• Substitutability
 – If A_i implements A'_i for all i then $\prod A_i$ implements $\prod A'_i$ (assuming $\prod A_i$ and $\prod A'_i$ are defined).
 • follows from trace projection and pasting
 – Analogous result for “fair implementation”.
Other operations on I/O automata

• Hiding
 – make some output actions internal
 – hides internal communication among components of system

• Renaming
 – change names of some actions (changes sig, trans, tasks)
 – important because communication between automata is through shared actions
 – typically just make names right in first place
Channel automaton

- Reliable unidirectional FIFO channel for 2 processes
 - fix message “alphabet” M
- signature
 - input actions: send(m) for m ∈ M
 - output actions: receive(m) for m ∈ M
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty
Channel automaton

- **trans**
 - send(m)
 - effect: add m to (end of) queue
 - receive(m)
 - precondition: m is at head of queue
 - effect: remove head of queue

- **tasks**
 - all receive actions in one task
Composing two channel automata

- Output of B is input of A
 - rename receive(m) of B and send (m) of A to pass(m)
- hide \(\{ \text{pass}(m) \mid m \in M \} \) \(A \times B \) implements C
 - define simulation relation \(R \):
 - for \(s \in \text{states}(A \times B) \) and \(u \in \text{states}(C) \),
 \(s R u \) iff \(u.\text{queue} \) is concatenation of \(s.A.\text{queue} \) and \(s.B.\text{queue} \)
 - start: all queues empty, so start states correspond
 - step: define “step correspondence”
Composing two channel automata

\[\text{s R u iff u.queue is concatenation of s.A.queue and s.B.queue} \]

- step correspondence:
 - for each step \((s, \pi, s') \in \text{trans}(A \times B)\) and \(u\) such that \(s \text{ R } u\), define execution fragment \(\alpha\) of C
 - starts with \(u\) ends with \(u'\) such that \(s' \text{ R } u'\)
 - \(\text{trace}(\alpha) = \text{trace}(\pi)\)
 - actions in \(\alpha\) depends only on \(\pi\), uniquely determine post-state
 - same action if external, \(\lambda\) otherwise
Composing two channel automata

- **step correspondence:**
 - $\pi = \text{send}(m)$ corresponds to $\text{send}(m)$ in C
 - $\pi = \text{receive}(m)$ corresponds to $\text{receive}(m)$ in C
 - $\pi = \text{pass}(m)$ corresponds to λ in C

- **verify actions are enabled, preserve simulation relation**
 - boring case analysis

$s \mathcal{R} u$ iff $u.\text{queue}$ is concatenation of $s.A.\text{queue}$ and $s.B.\text{queue}$
Asynchronous networks

- Processes communicate via channels
 - point-to-point
 - digraph $G = (V, E)$; like synchronous networks, but no rounds
 - broadcast, multicast
- Model processes and channels as I/O automata
 - communicate via send, receive actions
- Basic algorithms on asynchronous networks
 - leader election, set up spanning tree, breadth-first search, shortest paths, minimum spanning tree
 - compare with synchronous algorithms
Send/receive systems

- Point-to-point networks
 - process automata associated with nodes
 - problems specify inv, resp and allowable traces
 - hide send/receive actions
 - failures
 - stopping
 - Byzantine
 - channel automata associated with (directed) edges
Channel automata

- Different kinds of channel with this interface
 - reliable FIFO
 - weaker guarantees: lossy, duplicating, reordering
- Can also define trace properties (use “cause” fn)
 - integrity: map preserves message
 - no loss: map is onto
 - no duplicates: map is 1-1
 - no reordering: map is order-preserving (monotone)
Broadcast and multicast

- **Broadcast**
 - reliable FIFO between each pair, but different processes can receive msgs from different senders in different orders
 - model: separate queues for each pair
 - failures, consistency conditions (e.g., atomic bcast)
- **Multicast**: processes designate recipients
Asynchronous network algorithms

• Assume reliable FIFO point-to-point channels
• Look at problems solved for synchronous network
 – Leader election in ring
 – Leader election in general networks
 – Spanning tree construction
 – Breadth-first search
 – Shortest paths
 – Minimum spanning tree
• How much holds over?
 – where did we use synchronous assumption?
Leader election in a ring

• Recap assumptions
 – G is a ring, unidirectional or bidirectional communication
 – local names for neighbors, UIDs

• LeLann-Chang-Roberts (AsynchLCR)
 – send UID clockwise around ring (unidirectional)
 – throw away UIDs smaller than your own
 – elect self if your UID returns
 – correctness: basically same as for synchronous algorithm
 • but now must consider messages in channels, “pileup”
 • messages sent individually (induction on steps vs. rounds)
AsynchLCR

• Signature
 – \textit{in} \texttt{rcv}(v)_{i-1,i}; v \text{ is a UID}
 – \textit{out} \texttt{send}(v)_{i,i+1}; v \text{ is a UID}
 – \textit{out} \texttt{leader}_i

• State variables
 – \texttt{u}: UID
 – \texttt{send}: FIFO queue of UIDs
 – \texttt{status}: unknown, chosen, or reported

• Tasks
 – \{ \texttt{send}(v)_{i,i+1} \mid v \text{ is a UID} \} \text{ and } \{ \texttt{leader}_i \}
AsynchLCR

• Safety: no process other than i_{max} performs leader$_i$

 – if $i \neq i_{\text{max}}$ and $j \in [i_{\text{max}}, i)$ then u_i not in send_j.

• Liveness: i_{max} eventually performs leader$_i$

 – if distance from i_{max} to i is d, then u_{max} is in send_i after ??
AsynchLCR

- **Safety:** no process other than i_{max} performs leader$_i$
 - if $i \neq i_{\text{max}}$ and $j \in [i_{\text{max}}, i)$ then u_i not in send$_j$ or in queue$_{j,j+1}$

- **Liveness:** i_{max} eventually performs leader$_i$
 - for $k \in [0,n-1]$, u_{max} eventually in send$_{i_{\text{max}}+k}$ / queue$_{i_{\text{max}}+k,i_{\text{max}}+k+1}$
 - prove by induction on k; use fairness to prove inductive step

- **Complexity**
 - msg: $O(n^2)$, as before
 - time: ??
AsynchLCR

- **Safety**: no process other than \(i_{\text{max}} \) performs leader\(_i\)
 - if \(i \neq i_{\text{max}} \) and \(j \in [i_{\text{max}}, i) \) then \(u_i \) not in \(\text{send}_j \) or in \(\text{queue}_{j,j+1} \)

- **Liveness**: \(i_{\text{max}} \) eventually performs leader\(_i\)
 - for \(k \in [0,n-1] \), \(u_{\text{max}} \) eventually in \(\text{send}_{i_{\text{max}}+k} \) / \(\text{queue}_{i_{\text{max}}+k,i_{\text{max}}+k+1} \)
 - prove by induction on \(k \); use fairness to prove inductive step

- **Complexity**
 - msg: \(O(n^2) \), as before
 - time: \(O(n(l+d)) \)
 - \(l \) is upper bound on local step time for each process
 - \(d \) is upper bound on time to deliver first message

only upper bounds okay: does not restrict executions
Leader election in a ring

• Reduce message complexity?
 - Hirschberg-Sinclair: $O(n \log n)$, requires bidirectional comm.

• Peterson's algorithm
 - $O(n \log n)$ messages
 - unidirectional communication
 - unknown ring size
 - comparison-based
Leader election in a ring

- Peterson's leader election algorithm
 - Proceed in phases, each process may be active or passive
 - passive process just pass messages along
 - Phase 1:
 - send UID down two processes; get two UIDs
 - remain active iff middle UID is max
 - adopt middle UID (the max one)
 - at most half processes are active “after” first phase
 - Later phases: ??
 - phases may be concurrent
 - Termination ??
PetersonLeader

- **Signature**
 - *in* receive(v)_{i-1,i}; v is a UID
 - *out* send(v)_{i,i+1}; v is a UID
 - *out* leader_i
 - *int* get-second-uid_i
 - *int* get-third-uid_i
 - *int* advance-phase_i
 - *int* become-relay_i
 - *int* relay_i

- **State variables**
 - *send*: FIFO queue of UIDs; initially contains i’s UID
 - *receive*: FIFO queue of UIDs
 - *status*: unknown, chosen, or reported; initially empty
 - *mode*: active or relay; initially active
 - *uid1*: initially i’s UID
 - *uid2*: initially null
 - *uid3*: initially null
PetersonLeader

- **get-second-uid_i**
 pre: `mode = active`
 `receive` is nonempty
 `uid2 = null`
 eff: `uid2 := head of receive`
 remove head of `receive`
 add `uid2` to `send`
 if `uid2 = uid1` then
 `status := chosen`

- **advance-phase_i**
 pre: `mode = active`
 `uid3 ≠ null`
 `uid2 > max(uid1, uid3)`
 eff: `uid1 := uid2`
 `uid2 := null`
 `uid2 := null`
 add `uid1` to `send`

- **become-relay_i**
 pre: `mode = active`
 `uid3 ≠ null`
 `uid2 ≤ max(uid1, uid3)`
 eff: `mode := relay`

- **get-third-uid_i**
 pre: `mode = active`
 `receive` is nonempty
 `uid2 ≠ null`
 `uid3 = null`
 eff: `uid3 := head of receive`
 remove head of `receive`

- **relay_i**
 pre: `mode = relay`
 `receive` is nonempty
 eff: move head of `receive` to `send`
PetersonLeader

- Tasks:
 - \{ \text{send}(v)i,i+1 \mid v \text{ is a UID} \}
 - \{ \text{get-second-uid}_i, \text{get-third-uid}_i, \text{advance-phase}_i, \text{become-relay}_i, \text{relay}_i \}
 - \{ \text{leader}_i \}

- Number of phases is $O(\log n)$

- Complexity
 - msg: $O(n \log n)$
 - time: $O(n(l+d))$
Leader election in a ring

- Can we do better than $O(n \log n)$ msg complexity?
 - not with comparison-based algorithms (why?)
 - not at all—but we didn't cover this
- Lower bound in asynchronous network if n is unknown
 - Key: “assemble” ring from pieces which delay communication
 - silent state: no more messages will be sent without input
 - ring looks like “line” if communication delayed across ends
 - take 3 lines that send k messages before becoming silent
 - some pair sends $2k+l$ messages before becoming silent
 - l is the length of the lines
 - connect ends of line to turn into ring
Next lecture

- More asynchronous network algorithms (Chapter 15)
 - Constructing a spanning tree
 - Breadth-first search
 - Shortest paths
 - Minimum spanning tree