
6.852 Lecture 23

● Transactional memory (continued)

● Shared memory vs networks

● Paxos

● Reading:
– Herlihy, Luchangco, Moir, Scherer paper

– Dice, Shalev, Shavit paper

– Lynch, Chapter 17

– Lamport: The Part-Time Parliament



Transactional memory

● Raise level of abstraction
– programmer specifies atomicity boundaries: transactions

– system guarantees atomicity
● commits if it can
● aborts if not (roll back any changes)
● possibly retry on abort

– system manages contention (possibly separable functionality)

– compositional (due to nested transactions)
● but large transactions may not commit

– simplified interface: atomic blocks
● atomic { code }
● automatic retry



Using transactional memory
Q.enqueue(x)
  node = new Node(x)
  node.next := null
  atomic{
    oldtail = Q.tail
    Q.tail := node
    if oldtail = null then
      Q.head := node
    else
      oldtail.next := node
  } 

Q.dequeue()
  atomic{ 
    if Q.head = null then
      return null
    else
      node := Q.head
      Q.head := node.next
      if node.next = null then
        Q.tail := null
      return node.item
  } 

transfer(Q,Q')
  atomic{
    x = Q.dequeue()
    if x  null then
      Q'.enqueue(x)
  }



Dynamic STM (DSTM)

● object-based (JavaTM library)

● no locks (obstruction-free)

● supports dynamic allocation and access

● separable contention management

● pluggable implementations (2nd release)
– added blocking “shadow” implementation
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Enable “read-sharing”

● Invisible readers
– keep thread-local “read set”: pairs of location and version read

– validation checks no location in read set has changed

● Visible readers
– keep set of active readers in “locator”

● Semi-visible readers
– keep number of readers
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Transactional Locking II (TL2)

● Best (or one of the best) performing STM
– also other nice properties beyond the scope of this lecture

● Lock-based, word-based STM
– locks only held during commit phase (not executing user code)

● Uses global version number (potential bottleneck)
– updated by each writing transaction (but could relax this)

● Every location also has version number
– transaction that last wrote it



Transactional Locking II (TL2)
● Read global version counter

– store locally: rv (for read version)

● Run transaction “speculatively”
– track which locations are read and written

– when location first accessed, check version counter

– write values into write set

– read values into read set (so transaction gets consistent reads)

● if value was written by transaction, get value from write set

● At commit
– lock write set

– increment global version counter

– validate read set

– write-back values

– release locks



Combining hardware and software

● Hardware-assisted transactional memory
– new required hardware

– hardware support can accelerate implementation

● Hybrid transactional memory
– STM that can work with HTM 

● hardware transactions and software transactions must “play nicely”
● can be used now (with no hardware support)
● can exploit HTM support with little change

– phased transactional memory
● can switch dynamically between using STM and HTM



Shared memory vs networks
● Network algorithm to shared memory algorithm

– “implement” network using shared memory

– easy because shared memory is “stronger” than network

– useful primarily for lower bounds (e.g., impossibility of consensus)

● Shared memory algorithm to network algorithm
– “implement” shared memory over network (DSM)

– easy if no failures

– impossible if more than n/2 failures

– Attiya-BarNoy-Dolev fault-tolerant algorithm

● Replicated state machine over network
– Paxos



Network on shared memory
● State variables for each i (written by i)

– pstatei: states(Pi)

– sent(j)i for each out-neighbor j: sequence of M, initially empty

– msgs-rcvd(i)j for each in-neighbor j: N, initially 0

● Transitions for i

– send(m,j)i:

● pre: send(m)i,j in pstatei

● eff: append m to sent(j)i; update pstatei as for send(m)i,j

– receive(m,j)i

● pre: |sent(i)j| > msgs-rcvd(j)i; m = sent(i)j[msgs-rcvd(j)i+1]

● eff: increment msgs-rcvd(j)i; update pstatei as for receive(m)j,i

– all others: precondition/effect as in Pi with state pstatei



Network on shared memory

● Impossibility of consensus on network
– with reliable FIFO channels

– with reliable broadcast
● similar transformation



Shared memory over network
● Assume shared memory system A

– n ports; user Ui for i = 1..n interacts with process i on port i 

– for each i, either user's turn, or process's turn (not both)
● so we can use atomic objects instead of shared variables

● Design asynchronous network system B
– same ports/user interface

– execs of B are indistiguishable (to users) from execs of A
● and same processes fail (if applicable)

● Non-fault-tolerant strategies: single-copy, multiple copy

● Impossibility of tolerating majority failures

● ABD fault-tolerant algorithm for read/write registers



Single-copy DSM

● Each shared variable is “owned” by some process
– owner(X) known by all

– handle each shared variable independently

● All actions other than shared-memory access as before

● To invoke op on X, send “inv(op,X)” to owner(X)
– wait for response

– continue to handle invocation msgs received

● Each process applies operations in order received
– send response of each operation to appropriate process



Single-copy DSM

● Can implement any shared variable type

● Location of shared variables

● Elimination of busy-waiting
– send “condition” to owner

– works for multiple variables if they have the same owner

● Process stopping means no access to variables it owns



Multicopy DSM

● Goal: improve performance of read
– maintain several copies

– can be good if reading is more common than writing

– still no fault tolerance

● Concern: “coherence” problems
– inconsistency among various copies

– problem even for single-writer shared variables

● Use transactions to maintain coherence

● See book for more details



Impossibility of n/2-fault-tolerance
● Theorem: In asynchronous reliable broadcast model with n = m+p 

processes, no implementation of m-writer p-reader atomic registers 
guarantees f-failure termination for f ≥ n/2.

● Proof: (same structure for many proofs against n/2-fault-tolerance)

– Partition processes into two halves (each with size at most f)

● some writer w in first half, some reader r in second half
– Consider 

● αw: fair exec starting with writew(1), all processes in second half fail

● αr: fair exec starting with readr, all processes in first half fail

– By f-failure-termination each must get a response (read gets 0)

● Do αw upto response, then αr up to response, without failures and 
delaying all messages between two halves.

– Violates atomicity because read comes after write but gets 0



ABD algorithm

● Implements atomic single-writer multireader register 

● Tolerates f < n/2 stopping faults

● Assume reliable channels



ABD algorithm

READERS
on read
  readtag := readtag+1
  send “read(readtag)” to all other processes
    - wait for ack from majority
  let t be largest tag received
  if t > tag then (val,tag) := (v,t)
    where v is value received with t
  send “propagate(val,tag,readtag)” to all readers
    - wait for ack from majority
  return val

ALL PROCESSES 
on receiving “read(rt)” from j
  send “read-ack(val,tag,rt)” to j

READERS
on receiving “propagate(v,t)” from j
  if t > tag then (val,tag) := (v,t)
  send “prop-ack(t)” to j

WRITER
on write(v)
  (val,tag) := (v,tag+1)
  send “write(val,tag)” to all readers
    - wait for ack from majority
  return ack

READERS
on receiving “write(v,t)” from writer 
 if t > tag then
    (val,tag) := (v,t)
  send “write-ack(t)” to writer

STATE VARIABLES per process
val: V, initially v0

tag: N, initially 0
readtag: N, initially 0
lots of “bookkeeping” variables



ABD algorithm

● Correctness
– well-formedness

– f-failure-termination

– atomicity
● linearization point of write with tag t

– when majority of processes have tag ≥ t
– may linearize multiple writes at same point

● linearization point of read returning value associated with tag t
– immediately after linearization point of write with tag t, or
– immediately after invocation of read, (why do we need this?)
– whichever is later

● book uses partial order method



ABD algorithm

● What kind of channels are required?
– reliable?

– nonduplicating?

– FIFO?

– Byzantine?

● What kind of faults are tolerated?
– stopping?

– omission?

– Byzantine?



Agreement in asynchronous networks

● Impossible to reach agreement in asynchronous networks, even if 
we know that at most one failure will occur.

● But what if we really need to?
– For transaction commit.
– For agreeing on order of operations to perform.
– …

● Some possibilities:
– Randomized algorithm (Ben-Or), terminates with high probability.
– Approximate agreement.
– Use a failure detector service, implemented by timeouts.

● Best strategy:
– Guarantee agreement, validity in all cases.
– Guarantee termination only if the system eventually “stabilizes”:

● Failures, recoveries stop.
● Timing of messages, process steps within known “normal” bounds.

– Actually, stable behavior need not continue forever, just long enough for 
termination to occur.



Eventually stable approach

• [Dwork, Lynch, Stockmeyer] first to present an algorithm 
with these properties.

• [Lamport, Part-Time Parliament]
– Introduced the Paxos algorithm.
– Relationship with [DLS]:

● Achieves similar guarantees.
● Paxos allows more concurrency, tolerates more kinds of failures.
● Basic strategy for assuring safety similar to [DLS].

– Background:
● Paper unpublished for 10 years because of nonstandard style.
● Eventually published “as is”, because others began recognizing its 

importance and building on its ideas.



Paxos consensus protocol

● Called “Single-Decree Synod” protocol.
● Assumptions:

– Asynchronous processes, stopping failures, also recovery.
– Messages may be lost.

● Paper also describes how to cope with crashes, where 
volatile memory is lost in a crash (skip this).

● We’ll present in two stages:
– Describe a very nondeterministic algorithm that guarantees the 

safety properties (agreement, validity).
– Constrain this to get termination soon after stabilization.



The nondeterministic “safe” algorithm:  
Ballots

● Uses ballots, each of which represents an attempt to 
reach consensus.

● Ballot = (id, value) pair.
– id ∈ BId, a totally ordered set of ballot identifiers.
– Value in V ∪ { ⊥ }, where V is the consensus domain.

● Somehow, ballots get started, and get values assigned 
to them.

● Processes can vote for, or abstain from, particular 
ballots.
– Abstention from a ballot is a promise never to vote for it.



The safe algorithm:  Quorums

● The fate of a ballot depends on the actions of quorums of 
processes on that ballot.

● Quorum configuration:
– A set of read-quorums, finite subsets of process index set I.
– A set of write-quorums, finite subsets of I, such that
– R ∩ W nonempty for every read-quorum R and write-quorum W.

● Generalization of majorities.
● Ballot becomes dead if every node in some read-quorum abstains 

from it.
● A ballot can succeed only if every node in a write-quorum votes for 

it.



Safe algorithm, centralized version

● Anyone can create a new ballot with id b:
– make-ballot(b)
– provided no ballot with id b has yet been created.
– val(b) is set to ⊥.

● A process i can abstain, in one step, from an entire set 
of ballots:
– abstain(B,i), B ⊆ BId
– provided i has not previously voted for any ballot in B.
– B may be any set of ballot ids, not necessarily associated with 

already-created ballots.
● For example, B = all ballot ids in some range [bmin, bmax].
● This will be important in the algorithm…



Safe algorithm, centralized version

● Anyone can assign a value v to a ballot id b, assign-val(b,v),  
provided:
– A ballot with id = b has been created.
– val(b) is undefined.
– v is someone’s consensus input.
– ** For every b' < b, either val(b') = v or b' is dead.

● Recall: b' dead means read-quorum R has abstained from b'.
● Refers to every b' ∈ BId, not just created ones.

– relies on “set abstentions”.
● Thus, we can assign a value to a ballot b only if we know it won’t 

make b conflict with lower-numbered ballots b'.
● Motivation:

– several ballots can be created, collect votes.
– more than one might succeed in collecting a write quorum of votes.
– but we don’t want successful ballots to conflict.



Next time

● Continue Paxos algorithm

● Self-stabilization

● Reading:
– Lamport: Part-Time Parliament

– Dijkstra paper on self-stabilization

– Dolev book on self-stabilization, Chapter 2


