6.852 Lecture 23

* Transactional memory (continued)
» Shared memory vs networks
* Paxos
* Reading:
- Herlihy, Luchangco, Moir, Scherer paper
- Dice, Shalev, Shavit paper

- Lynch, Chapter 17
— Lamport: The Part-Time Parliament



Transactional memory

e Raise level of abstraction

— programmer specifies atomicity boundaries: transactions
- system guarantees atomicity

e commits if it can
e aborts if not (roll back any changes)
e possibly retry on abort
- system manages contention (possibly separable functionality)

— compositional (due to nested transactions)

e but large transactions may not commit
- simplified interface: atomic blocks

 atomic { code }
e automatic retry



Using transactional memory

Q.enqueue(x) Q.dequeue()
node = new Node(x) atomic{
node.next := null If Q.head = null then
atomic{ return null
oldtail = Q.tail else
Q.tail := node node = Q.head
if oldtail = null then Q.head := node.next
Q.head := node if node.next = null then
else Q.tail := null
oldtail.next := node return node.item
} }
transfer(Q,Q")
atomic{
X = Q.dequeuel()
if X null then

Q'.enqueue(x)

}



Dynamic STM (DSTM)

- object-based (Java'™ library)

* no locks (obstruction-free)

» supports dynamic allocation and access
» separable contention management

* pluggable implementations (2" release)

- added blocking “shadow” implementation



&

xaction

new objec

old object

aborted




&

xaction - - ‘ xaction
aborte active
old object old object

=D



A
xaction - - ‘ xaction
aborte active
old object old object

OO0 @



&

xaction

commit

new objec

old object




&

xaction _ xaction
_ commlt‘ : active
new objec new objec

old object old object




_ 1

xaction _ xaction
_ commlt‘ : active
new objec new objec

old object old object




&

xaction

active

new objec

old object







Enable “read-sharing”

e Invisible readers

- keep thread-local “read set”: pairs of location and version read
- validation checks no location in read set has changed

* Visible readers
— keep set of active readers in “locator”
e Semi-visible readers

- keep number of readers



xaction
field 1

shadow 1
fleld 2

shadow 2
fleld 3
shadow 3

commit




xaction
field 1

shadow 1
fleld 2

shadow 2
fleld 3
shadow 3

commit




active ‘

xaction ‘conwnk‘




active

xaction
field 1

shadow 1
fleld 2

shadow 2
fleld 3
shadow 3




Transactional Locking Il (TL2)

» Best (or one of the best) performing STM

—also other nice properties beyond the scope of this lecture
 Lock-based, word-based STM

—locks only held during commit phase (not executing user code)
» Uses global version number (potential bottleneck)

- updated by each writing transaction (but could relax this)
» Every location also has version number

—transaction that last wrote it



Transactional Locking Il (TL2)

* Read global version counter
— store locally: rv (for read version)
* Run transaction “speculatively”

- track which locations are read and written

- when location first accessed, check version counter

— write values into write set

- read values into read set (so transaction gets consistent reads)

« if value was written by transaction, get value from write set

At commit

- lock write set

- increment global version counter
- validate read set

— write-back values

- release locks



Combining hardware and software

» Hardware-assisted transactional memory

- new required hardware
— hardware support can accelerate implementation

* Hybrid transactional memory
- STM that can work with HTM

» hardware transactions and software transactions must “play nicely”
 can be used now (with no hardware support)
 can exploit HTM support with little change

- phased transactional memory
e can switch dynamically between using STM and HTM



Shared memory vs networks

* Network algorithm to shared memory algorithm

- “implement” network using shared memory

— easy because shared memory is “stronger” than network

— useful primarily for lower bounds (e.g., impossibility of consensus)
» Shared memory algorithm to network algorithm

- “implement” shared memory over network (DSM)

- easy if no failures

- impossible if more than n/2 failures

- Attiya-BarNoy-Dolev fault-tolerant algorithm
* Replicated state machine over network

— Paxos



Network on shared memory

 State variables for each i (written by i)
- pstate;: states(P;)
- sent(j); for each out-neighbor j: sequence of M, initially empty
- msgs-rcvd(i); for each in-neighbor j: N, initially O
 Transitions for i
- send(m,));:
« pre: send(m);; in pstate;
- eff: append m to sent(j); update pstate; as for send(m);;
- receive(m,j);
« pre: [sent(i);| > msgs-rcvd(j); m = sent(i)[msgs-rcvd(j)i+1]

« eff: increment msgs-rcvd(j);; update pstate; as for receive(m)j,i

- all others: precondition/effect as in P; with state pstate;



Network on shared memory

* Impossibility of consensus on network

—with reliable FIFO channels
—with reliable broadcast

e similar transformation



Shared memory over network

 Assume shared memory system A
- n ports; user U, for i = 1..n interacts with process i on port i

—for each i, either user's turn, or process's turn (not both)
* SO We can use atomic objects instead of shared variables

» Design asynchronous network system B

- same ports/user interface

— execs of B are indistiguishable (to users) from execs of A
« and same processes fail (if applicable)

* Non-fault-tolerant strategies: single-copy, multiple copy
* Impossibility of tolerating majority failures
» ABD fault-tolerant algorithm for read/write registers



Single-copy DSM

» Each shared variable is “owned” by some process

- owner(X) known by all
- handle each shared variable independently

 All actions other than shared-memory access as before
* To invoke op on X, send “inv(op,X)” to owner(X)

—wait for response
- continue to handle invocation msgs received

 Each process applies operations in order received

- send response of each operation to appropriate process



Single-copy DSM

 Can implement any shared variable type
| ocation of shared variables
 Elimination of busy-waiting

- send “condition” to owner
—works for multiple variables if they have the same owner

* Process stopping means no access to variables it owns



Multicopy DSM

* Goal: improve performance of read

- maintain several copies
—can be good if reading is more common than writing
- still no fault tolerance

« Concern: “coherence” problems

—Inconsistency among various copies
- problem even for single-writer shared variables

e Use transactions to maintain coherence

« See book for more details



Impossibility of n/2-fault-tolerance

* Theorem: In asynchronous reliable broadcast model with n = m+p
processes, no implementation of m-writer p-reader atomic registers
guarantees f-failure termination for f = n/2.

» Proof: (same structure for many proofs against n/2-fault-tolerance)

- Partition processes into two halves (each with size at most f)

* some writer w in first half, some reader r in second half
- Consider

. a,,: fair exec starting with write,, (1), all processes in second half fail

« o, fair exec starting with read,, all processes in first half fail

- By f-failure-termination each must get a response (read gets 0)

« Do a,, upto response, then o, up to response, without failures and
delaying all messages between two halves.

- Violates atomicity because read comes after write but gets 0



ABD algorithm

* Implements atomic single-writer multireader register
 Tolerates f < n/2 stopping faults
* Assume reliable channels



ABD algorithm

STATE VARIABLES per process
val: V, initially vg

tag: N, initially O

readtag: N, initially O

lots of “bookkeeping” variables

WRITER
on write(v)
(val,tag) := (v,tag+1)
send “write(val,tag)” to all readers
- wait for ack from majority
return ack

READERS
on receiving “write(v,t)” from writer
if t > tag then
(val,tag) = (v,1)
send “write-ack(t)” to writer

READERS
on read
readtag := readtag+1
send “read(readtag)” to all other processes
- wait for ack from majority
let t be largest tag received
if t > tag then (val,tag) := (v,t)
where v is value received with t
send “propagate(val,tag,readtag)” to all readers
- wait for ack from majority
return val

ALL PROCESSES

on receiving “read(rt)” from ;

send “read-ack(val,tag,rt)” to j

READERS

on receiving “propagate(v,t)” from |
if t > tag then (val,tag) := (v,t)
send “prop-ack(t)’ to j



ABD algorithm

e Correctness

- well-formedness
— f-failure-termination
— atomicity
e linearization point of write with tag t

- when majority of processes have tag = t
- may linearize multiple writes at same point
* linearization point of read returning value associated with tag t
- immediately after linearization point of write with tag t, or
- immediately after invocation of read, (why do we need this?)
— whichever is later
* book uses partial order method



ABD algorithm

* What kind of channels are required?

- reliable?
- nonduplicating?
-FIFO?
- Byzantine?
* What kind of faults are tolerated?
- stopping?
— omission?
- Byzantine?



Agreement in asynchronous networks

* Impossible to reach agreement in asynchronous networks, even if
we know that at most one failure will occur.

e But what if we really need t0?
- For transaction commit.
- For agreeing on order of operations to perform.

e Some possibilities:
- Randomized algorithm (Ben-Or), terminates with high probability.

— Approximate agreement.
- Use a failure detector service, implemented by timeouts.

» Best strategy:
- Guarantee agreement, validity in all cases.
— Guarantee termination only if the system eventually “stabilizes™:

 Failures, recoveries stop.
« Timing of messages, process steps within known “normal” bounds.

- Actually, stable behavior need not continue forever, just long enough for
termination to occur.



Eventually stable approach

« [Dwork, Lynch, Stockmeyer] first to present an algorithm
with these properties.

« [Lamport, Part-Time Parliament]

- Introduced the Paxos algorithm.
- Relationship with [DLS]:
* Achieves similar guarantees.
» Paxos allows more concurrency, tolerates more kinds of failures.
 Basic strategy for assuring safety similar to [DLS].
- Background:
» Paper unpublished for 10 years because of nonstandard style.

» Eventually published “as is”, because others began recognizing its
importance and building on its ideas.



Paxos consensus protocol

 Called “Single-Decree Synod” protocol.

e Assumptions:
- Asynchronous processes, stopping failures, also recovery.
- Messages may be lost.

* Paper also describes how to cope with crashes, where
volatile memory is lost in a crash (skip this).

* We'll present in two stages:

— Describe a very nondeterministic algorithm that guarantees the
safety properties (agreement, validity).

- Constrain this to get termination soon after stabilization.



The nondeterministic “safe” algorithm:
Ballots

» Uses ballots, each of which represents an attempt to
reach consensus.

 Ballot = (id, value) pair.
- id € Bld, a totally ordered set of ballot identifiers.
-Value in V U { L}, where V is the consensus domain.

« Somehow, ballots get started, and get values assigned
to them.

* Processes can vote for, or abstain from, particular
ballots.

- Abstention from a ballot is a promise never to vote for it.



The safe algorithm: Quorums

e The fate of a ballot depends on the actions of quorums of
processes on that ballot.

e Quorum configuration:
- A set of read-quorums, finite subsets of process index set |.

— A set of write-quorums, finite subsets of |, such that
- R N W nonempty for every read-quorum R and write-quorum W.

» Generalization of majorities.

 Ballot becomes dead if every node in some read-quorum abstains
from it.

A ballot can succeed only if every node in a write-quorum votes for
it.



Safe algorithm, centralized version

 Anyone can create a new ballot with id b:
— make-ballot(b)
- provided no ballot with id b has yet been created.
-val(b) is set to L.

e A process i can abstain, in one step, from an entire set
of ballots:

— abstain(B,i), B C Bld
- provided i has not previously voted for any ballot in B.

- B may be any set of ballot ids, not necessarily associated with
already-created ballots.
« For example, B = all ballot ids in some range [b

 This will be important in the algorithm...

min?’ bmax]'



Safe algorithm, centralized version

* Anyone can assign a value v to a ballot id b, assign-val(b,v),
provided:

— A ballot with id = b has been created.
- val(b) is undefined.
- V IS someone’s consensus input.
— ™ For every b' < b, either val(b') = v or b' is dead.
* Recall: b' dead means read-quorum R has abstained from b'.
» Refers to every b' € Bld, not just created ones.
- relies on “set abstentions”.

e Thus, we can assign a value to a ballot b only if we know it won’t
make b conflict with lower-numbered ballots b'.
 Motivation:
— several ballots can be created, collect votes.
- more than one might succeed in collecting a write quorum of votes.
- but we don’t want successful ballots to conflict.



Next time

» Continue Paxos algorithm
» Self-stabilization
e Reading:
- Lamport: Part-Time Parliament

- Dijkstra paper on self-stabilization
- Dolev book on self-stabilization, Chapter 2



