6.852 Lecture 14 (continued)

• Mutual exclusion with read/write memory (continued)
 – Burns' algorithm
 – lower bound on number of registers

• Algorithms with read-modify-write operations
 – test-and-set locks; queue locks
 – pragmatic issues: contention, caching
 – practical algorithms (to be continued)

• Reading:
 – Chapter 10
 – Mellor-Crummey and Scott paper (Dijkstra prize winner)
 – Magnussen, Ladin, Hagersten paper
Next time

• Continue practical mutual exclusion algorithms
• Generalized resource allocation/exclusion problems
• Reading: Chapter 11
Space/memory considerations

• All previous algorithms use more than n variables
 – Bakery could use just n variables (why?)
• All but Bakery use multiwriter variables
 – these can be expensive to implement
• Bakery algorithm uses infinite-size variables
 – difficult to adapt to use finite-size variables
• Can we do better?
Burns' algorithm

- Uses n single-writer binary variables
- Simple
- Guarantees safety (mutual exclusion) and progress
 - but not starvation-freedom!
Burns' algorithm

try_i

L: for j = 1 to i-1 do
 if flag(j) = 1 then goto L
flag(i) := 1
for j = 1 to i-1 do
 if flag(j) = 1 then
 flag(i) := 0
 goto L
exit_i
flag(i) := 0
rem_i

M: for j = i+1 to n do
 if flag(j) = 1 then goto M
crit_i

minor change from book
Burns' algorithm

• Mutual exclusion:
 – if two processes in critical section simultaneously, who set flag to 1 (for the last time) first?

• Progress:
 – assume fair execution (everyone trying keeps taking steps)
 – if someone trying but no one is ever subsequently critical, someone eventually reaches M (why?)
 – anyone reaching M never falls back
 – someone who reaches M eventually becomes critical (why?)
Lower bound on registers

• Can we use fewer than n registers?
 – not if single-writer (why?)
 – not even if multiwriter!
Lower bound on registers

- Need at least 2 registers (if n > 1): by contradiction
 - before entering C, a process must write shared register
 * otherwise, no one else would know it entered C
 - run one process solo until just before it writes shared register
 * process covers the register
 - run second process until it enters C
 * can do so because it can't tell first process has run at all
 - continue first process, overwriting shared register
 * no more evidence of second process in C
 * first process enters C (contradicting mutual exclusion!)
Lower bound on registers

• Need at least 3 registers (if n > 2)?
 – run first process solo until just before it writes a register (x)
 – run second process until just before it writes other register (y)
 • must do so, or else run till enter C, then run first process, as before
 – run third process until it enters C...
Lower bound on registers

• Need at least 3 registers (if n > 2)?
 – run first process solo until just before it writes a register (x)
 – run second process until just before it writes other register (y)
 • must do so, or else run till enter C, then run first process, as before
 – run third process until it enters C...
 may see that second process wrote x, and so not enter C
Lower bound on registers

- Need at least 3 registers (if n > 2)?
 - run first process solo until just before it writes a register (x)
 - run second process until just before it writes other register (y)
 - must do so, or else run till enter C, then run first process, as before
 - run third process until it enters C...

 may see that second process wrote x, and so not enter C

Need some way to get two processes to cover both registers in a state indistinguishable from an idle state to a third process
Lower bound on registers

- Idea: one process acquires lock three times
 - at least two times, first register (x) written is the same
 - use first time to get second process to cover other register (y)
 - then acquire lock and return to apparently idle state
 - then cover x again

```
1 first covers a register (x)  
1 covers a register (y?)  
1 covers a register (x?)  
1st covers C,E,R,T\[\text{C,E,R,T}\]  
2 first covers y  
```
Lower bound on registers

- Idea: one process acquires lock three times
 - at least two times, first register (x) written is the same
 - use first time to get second process to cover other register (y)
 - then acquire lock and return to apparently idle state
 - then cover x again
Lower bound on registers

- **Lemma 1:** Process i can reach C from any (reachable) idle state s (and any states indistinguishable to i) without any steps by other process.
 - by progress condition

- **Lemma 2:** If execution fragment α has only steps of i and i starts in R and ends in C, then i writes some shared register not covered by any other process.
 - otherwise other processes can eliminate any evidence of i
 - one of them must enter C (by progress)
 - contradicts mutual exclusion (because i also in C)
Lower bound on registers

• Defn: s' is **k-reachable** from s if there is an exec frag from s to s' involving only steps by procs 1 to k.

• Lemma 3: For any $k \in [1,n-1]$ and from any idle state, there is a k-reachable state in which procs 1 to k cover k distinct shared registers and that is indistinguishable to procs k+1 to n from some k-reachable idle state.

 – By induction on k.
 – Base case (k=1):
 • run proc 1 until just before it writes first shared register
Lower bound on registers

- Lemma 3: For any $k \in [1, n-1]$ and from any idle state, there is a k-reachable state in which procs 1 to k cover k distinct shared registers and that is indistinguishable to procs $k+1$ to n from some k-reachable idle state.

 - Inductive step: Assume lemma for $k < n-1$; prove for $k+1$.
 - Let t_1 be state guaranteed by inductive hypothesis.
 - Let each process from 1 to k take a step, overwriting covered register.
 - Run all processes 1 to k until each is in R; resulting state u_1 is idle.
 - Repeat, generating t_2, u_2, t_3, u_3, etc., until we get t_i and t_j ($i < j$) that cover same set X of registers (why is this guaranteed to terminate?)
 - Run $k+1$ alone from t_i until just before it writes a register not in X.
 - Run all processes 1 to k as if from t_i to t_j (they can't tell the difference)
 - Result indistinguishable from t_j (and thus the idle state) to procs $k+2$ to n.
Lower bound on registers

- **Lemma 1:** Process i can reach C from any (reachable) idle state s (and any states indistinguishable to i) without any steps by other process.

- **Lemma 2:** If execution fragment has only steps of i and i starts in R and ends in C, then i writes some shared register not covered by any other process.

- **Lemma 3:** For any $k \in [1,n-1]$ and from any idle state, there is a k-reachable state in which procs 1 to k cover k distinct shared registers and that is indistinguishable to procs k+1 to n from some k-reachable idle state.

- **Theorem:** Any algorithm that solves n-process mutual exclusion with only read/write shared registers needs at least n of them.

 - By Lemma 3 from initial state, get state in which n-1 registers are covered and is indistinguishable from idle state to n.

 - By Lemma 1, n can reach C from this state (in which n is in R).

 - By Lemma 2, n must write some register not covered.
What lower bounds are good for

- At Bell Labs (several years ago), Gadi Taubenfeld found out Unix group was trying to develop an asynchronous mutual exclusion algorithm that used only a few r/w shared registers. He told them it was impossible.

- New research direction: Develop “space-adaptive” algorithms that potentially use many variables, but use few if only few processes are active (or “contend”).

- Also “time-adaptive” algorithms.

- In practice, this often means you can get much better performance/lower overhead.
Mutual exclusion with RMW

• Stronger memory primitives
 – all modern architectures provide one or more of these
 • called “synchronization primitives” or “atomic primitives”
 • typically expensive compared to reads and writes
 – but atomic reads and writes are also expensive
 • variables can also be read and written
 – not all the same strength: we'll come back to this in 2 weeks
 – does it enable better algorithms?
Mutual exclusion with RMW

- Test-and-set algorithm (trivial)
 - test-and-set: sets value to 1, returns previous value
 - usually on binary variables
 - one variable, 0 when unlocked (initial state), 1 when locked
 - to acquire lock, repeatedly test-and-set until get 0
 - to release lock, set variable to 0
 - no fairness

\[
\begin{align*}
\text{try}_i & \quad \text{exit}_i \\
\text{waitfor}(\text{test-and-set}(x) = 0) & \quad x := 0 \\
\text{crit}_i & \quad \text{rem}_i
\end{align*}
\]
Mutual exclusion with RMW

• Queue lock
 – shared variable: Q: a FIFO queue
 • supports enqueue, dequeue, head operations
 • very big variable!
 – to acquire lock, add self to queue, wait until you're at head
 – to release lock, remove self from queue
 – guarantees bounded bypass (indeed, no bypass)

\[
\text{try}_i \\
\quad \text{enqueue}(Q, i) \\
\quad \text{waitfor}(\text{head}(Q) = i) \\
\text{crit}_i \\
\text{exit}_i \\
\quad \text{dequeue}(Q) \\
\quad \text{rem}_i
\]
Mutual exclusion with RMW

- Ticket lock
 - like Bakery algorithm: get a number, wait till it's your turn
 - guarantees bounded bypass (indeed, no bypass)
 - shared variables: next, granted: integers, initially 0
 - supports fetch-and-increment (f&i)
 - to acquire lock, increment next, wait till granted
 - to release lock, increment granted

\[
\begin{align*}
\text{try}_i & \quad \text{exit}_i \\
\text{ticket} & := f\&i(\text{next}) \quad \text{f&i}(\text{granted}) \\
\text{waitfor}(\text{granted} = \text{ticket}) & \quad \text{rem}_i \\
\text{crit}_i & \\
\end{align*}
\]
Mutual exclusion with RMW

• Ticket lock
 – like Bakery algorithm: get a number, wait till it's your turn
 • guarantees bounded bypass (indeed, no bypass)
 – shared variables: next, granted: integers, initially 0
 • can we make these bounded in size? what bound?

\[
\begin{align*}
\text{try}_i & \\
\text{ticket} & := f\&i(\text{next}) \\
\text{waitfor}(\text{granted} = \text{ticket}) & \\
\text{crit}_i & \\
\text{exit}_i & \\
f\&i(\text{granted}) & \\
\text{rem}_i &
\end{align*}
\]
Mutual exclusion with RMW

• How small can we make the RMW variable?
 - one bit if only require progress (test-and-set algorithm)
 - $\Theta(n)$ values ($\Theta(\log n)$ bits) for bounded bypass
 • actually we know at least n values; can do in $n+k$ for small k
 - for starvation-freedom, it's harder:
 • lower bound of about \sqrt{n}
 • algorithm for $n/2 + k$, for small k

In practice, on a real shared-memory multiprocessor, we want few variables of size $O(\log n)$. So ticket algorithm is pretty good (in terms of space).