6.852 Lecture 11

* Logical time
* Replicated state machines
* Reading: Chapter 18, Lamport paper (1978)

“Jim Gray once told me that he heard two different
opinions of this paper: that's it trivial and that it's
brilliant. | can't argue with the former, and I'm
disinclined to argue with the latter.” —Lamport

Logical time

« Simplify asynchronous setting by making it appear
sequential (cf. synchronizers)

* Problem: assign “logical time” to all events in an
execution, should “look like real time”

— each process should know the logical time of its events
* Ordering events at different locations

- the problem of simultaneity (cf. relativity, interleaving semantics)
— causality and the “happens before” relation
* Applications
— global snapshot
- replicated state machines

Logical time

user
interface

» Consider a send/receive system with FIFO channels

— user interface events
- send/receive events
- internal events of process automata

* What conditions must logical times satisfy?

Logical time

e For execution a, function Itime from events in a to
reals is a logical time assignment if:

1. Itimes are distinct: Itime(e4) # Itime(e,) if e, # e,

2. Itimes of events at each process are monotonically increasing
3. Itime(send) < Itime(receive) for same message

4. for any t, number of events e with Itime(e) < t is finite

« Theorem: For all fair execs a, there is an fair exec o'
with events in Itime order such that o'|P, = a|P; for all i.

- Itime “looks like real time” (indistinguishable to each process)

— use properties of Itime to prove
e Unique o' by properties 1 and 4
e indistinguishable to each process by causality (prop 2 and 3)

Logical time

2

Logical time

2

-

1
2
3> .
5 \6
7
8
9
10 »
/
12/
Y Vv v Y%

Logical time

* |nitial algorithm by Lamport

- based on timestamping algorithm by Johnson and Thomas

— each process maintains local “clock” (a natural number)
 every event of process increases clock by at least 1
- every event increments clock

—on every msg sent, piggyback clock value (after incrementing)
-when msg received,

» take max of current clock and value in msg, then increment

Logical time

* |nitial algorithm by Lamport

— each process maintains local “clock” (a natural number)

- every event increments clock

—on every msg sent, piggyback clock value (after incrementing)
—when msg received,

 take max of current clock and value in msg, then increment
—logical time of an event is (c,i)
* ¢ = clock value immediately after event

e | = process index, to break ties
* number of processes must be finite

Logical time

* What if we already have clocks?

- monotone, nondecreasing, unbounded
- can't change the clock (maintained by external service)

 Alternative algorithm by Welch

- Idea: delay “early” messages

* msgs sent carry clock value
* buffer msgs received until local clock value = msg clock value
- logical time of event is (c,i,k)

* ¢ = local clock value when event “occurs” (well-defined?)
- receive events “occur’” when removed from buffer
* | = process index

* k = sequence number (second-order tiebreaker)

Logical time

* Analogous definition for broadcast systems:

e For execution a, function Itime from events in a to
reals is a logical time assignment if:

1. Itimes are distinct: Itime(e4) # Itime(e,) if e, # e,
2. Itimes of events at each process are monotonically increasing

3. Itime(bcast) < Itime(receive) for same message
4. for any t, number of events e with Itime(e) < t is finite

« Theorem: For all fair execs a, there is an fair exec o'
with events in Itime order such that o'|P, = a|P; for all i.

Applications of logical time

» Banking system with transfers (no deposit/withdrawal)

—asynchronous send/receive system
— each process has an “account” with money =0

— processes can send money at any time to anyone
» send message with value, subtract value from money
 add value received in messages to money

—add “dummy” transfers (heartbeat msgs)

—each process should output local balance

e triggered by input action some process(es)

— processes can awaken other processes that didn't receive input
« sum of outputs should be equal to total money in system

- well-defined because there are no deposits/withdrawals

Applications of logical time

* Assume logical-time algorithm
— each process knows logical time for each of its events
» Use algorithm that assumes agreed-upon logical time t

— each process determines value of money at logical time t
» after all events with Itime <t and before all events with Itime >t
- for each incoming channel, determine amount in transit at time t

 in messages sent at Itime <t and received at Itime > t
 count from when local clock > t, stop when msg timestamp >t

* What if local clock >t when node wakes up?
- keep logs
- try with different values of t

Applications of logical time

* Global snapshot

— generalization of banking system example
— given arbitrary algorithm on asynchronous send/receive system
- want instantaneous global snapshot of system state
» some “time” after a “triggering” action (typically an input)
— must not stop entire system
- useful for debugging, system backups, detecting termination

Applications of logical time

» Replicated state machines

- important use of logical time: focal point of Lamport's paper
- make distributed system simulate any centralized state machine

» no fault-tolerance

Replicated state machines

e Centralized state machine

- V: set of possible states
- Vp: initial state
- invs: set of possible invocations

- resps: set of possible responses
—trans: transition function: invs x V — resps x V

» Users of distributed system submit invocations, get
responses in well-formed manner (blocking invocations)
- want system to look like “atomic” variable (Chapter 13)

e could weaken requirement to “sequential consistency”
- no fault-tolerance

Replicated state machines

 Assume broadcast network
* Each process maintains

— X: copy of simulated variable

- inv-buffer: invocations it has heard about and their timestamps
* timestamp based on logical time of bcast event
- known-time: vector of “latest” logical times for each process

« for itself: logical time of last event
» for others: logical time of latest bcast event received

« Perform invocation = in inv-buffer when
— 1t has smallest timestamp of any invocation in its inv-buffer, and
— known-time(j) 2 timestamp(x) for all

-respond if w was invoked locally

Replicated state machines

e Correctness

- Liveness (termination)

* requires unbounded logical time at each process...
 and for other processes to know about it

- Safety (looks like centralized system)

e each process applies operations in the same (logical time) order

* “serialize” when all processes have reached logical time of bcast

- this is called the “serialization point” (or “linearization point”)
- why is this in the operation's “interval”

 requires FIFO channels to make sure that no invocations are “late”

Replicated state machines

» Special handling for “reads”
—don't bcast: just perform locally
— atomicity?
- sequential consistency

Vector timestamps

 Logical time imposes a total order

—this orders events that don't need to be ordered
» \Weak logical time

- same properties 1-4 as before, but

- logical times are only partially ordered
* Vector timestamps

—weak logical time

—logical times ordered if and only if events are causally ordered
— each process maintains “known time” of every process

 send entire vector with each msg

Next lecture

» Consistent global snapshots
» Stable property detection
* Reading: Chapter 19

