

6.852 Lecture 11

● Logical time

● Replicated state machines

● Reading: Chapter 18, Lamport paper (1978)

“Jim Gray once told me that he heard two different
opinions of this paper: that's it trivial and that it's
brilliant. I can't argue with the former, and I'm
disinclined to argue with the latter.” –Lamport

Logical time

● Simplify asynchronous setting by making it appear
sequential (cf. synchronizers)

● Problem: assign “logical time” to all events in an
execution, should “look like real time”
– each process should know the logical time of its events

● Ordering events at different locations
– the problem of simultaneity (cf. relativity, interleaving semantics)

– causality and the “happens before” relation

● Applications
– global snapshot

– replicated state machines

Logical time

● Consider a send/receive system with FIFO channels
– user interface events

– send/receive events

– internal events of process automata

● What conditions must logical times satisfy?

Messaging system

P1
P2 Pn

user
interface

send/
receive

Logical time
● For execution α, function ltime from events in α to

reals is a logical time assignment if:

1. ltimes are distinct: ltime(e1) ≠ ltime(e2) if e1 ≠ e2

2. ltimes of events at each process are monotonically increasing

3. ltime(send) < ltime(receive) for same message

4. for any t, number of events e with ltime(e) < t is finite

● Theorem: For all fair execs α, there is an fair exec α'
with events in ltime order such that α'|Pi = α|Pi for all i.

– ltime “looks like real time” (indistinguishable to each process)

– use properties of ltime to prove
● unique α' by properties 1 and 4
● indistinguishable to each process by causality (prop 2 and 3)

Logical time

3

6
7

1

2

8
9

10
11

4
5

12

Logical time

3

6
7

1

2

8
9

10
11

4
5

12

6
7

1

8
9

10 11

3

5

12

2

4

Logical time

● Initial algorithm by Lamport
– based on timestamping algorithm by Johnson and Thomas

– each process maintains local “clock” (a natural number)
● every event of process increases clock by at least 1

– every event increments clock

– on every msg sent, piggyback clock value (after incrementing)

– when msg received,
● take max of current clock and value in msg, then increment

Logical time

● Initial algorithm by Lamport
– each process maintains local “clock” (a natural number)

– every event increments clock

– on every msg sent, piggyback clock value (after incrementing)

– when msg received,
● take max of current clock and value in msg, then increment

– logical time of an event is (c,i)
● c = clock value immediately after event
● i = process index, to break ties
● number of processes must be finite

Logical time

● What if we already have clocks?
– monotone, nondecreasing, unbounded

– can't change the clock (maintained by external service)

● Alternative algorithm by Welch
– Idea: delay “early” messages

● msgs sent carry clock value
● buffer msgs received until local clock value ≥ msg clock value

– logical time of event is (c,i,k)
● c = local clock value when event “occurs” (well-defined?)

– receive events “occur” when removed from buffer
● i = process index
● k = sequence number (second-order tiebreaker)

Logical time

● Analogous definition for broadcast systems:

● For execution α, function ltime from events in α to
reals is a logical time assignment if:

1. ltimes are distinct: ltime(e1) ≠ ltime(e2) if e1 ≠ e2

2. ltimes of events at each process are monotonically increasing

3. ltime(bcast) < ltime(receive) for same message

4. for any t, number of events e with ltime(e) < t is finite

● Theorem: For all fair execs α, there is an fair exec α'
with events in ltime order such that α'|Pi = α|Pi for all i.

Applications of logical time

● Banking system with transfers (no deposit/withdrawal)
– asynchronous send/receive system

– each process has an “account” with money ≥ 0

– processes can send money at any time to anyone
● send message with value, subtract value from money
● add value received in messages to money

– add “dummy” transfers (heartbeat msgs)

– each process should output local balance
● triggered by input action some process(es)

– processes can awaken other processes that didn't receive input
● sum of outputs should be equal to total money in system

– well-defined because there are no deposits/withdrawals

Applications of logical time

● Assume logical-time algorithm
– each process knows logical time for each of its events

● Use algorithm that assumes agreed-upon logical time t
– each process determines value of money at logical time t

● after all events with ltime ≤ t and before all events with ltime > t

– for each incoming channel, determine amount in transit at time t
● in messages sent at ltime ≤ t and received at ltime > t
● count from when local clock > t, stop when msg timestamp > t

● What if local clock > t when node wakes up?
– keep logs

– try with different values of t

Applications of logical time

● Global snapshot
– generalization of banking system example

– given arbitrary algorithm on asynchronous send/receive system

– want instantaneous global snapshot of system state
● some “time” after a “triggering” action (typically an input)

– must not stop entire system

– useful for debugging, system backups, detecting termination

Applications of logical time

● Replicated state machines
– important use of logical time: focal point of Lamport's paper

– make distributed system simulate any centralized state machine
● no fault-tolerance

Replicated state machines

● Centralized state machine
– V: set of possible states

– v0: initial state

– invs: set of possible invocations

– resps: set of possible responses

– trans: transition function: invs × V → resps × V

● Users of distributed system submit invocations, get
responses in well-formed manner (blocking invocations)
– want system to look like “atomic” variable (Chapter 13)

● could weaken requirement to “sequential consistency”

– no fault-tolerance

Replicated state machines
● Assume broadcast network

● Each process maintains
– X: copy of simulated variable

– inv-buffer: invocations it has heard about and their timestamps
● timestamp based on logical time of bcast event

– known-time: vector of “latest” logical times for each process
● for itself: logical time of last event
● for others: logical time of latest bcast event received

● Perform invocation π in inv-buffer when

– π has smallest timestamp of any invocation in its inv-buffer, and

– known-time(j) ≥ timestamp(π) for all j

– respond if π was invoked locally

Replicated state machines

● Correctness
– Liveness (termination)

● requires unbounded logical time at each process...
● and for other processes to know about it

– Safety (looks like centralized system)
● each process applies operations in the same (logical time) order
● “serialize” when all processes have reached logical time of bcast

– this is called the “serialization point” (or “linearization point”)
– why is this in the operation's “interval”

● requires FIFO channels to make sure that no invocations are “late”

Replicated state machines

● Special handling for “reads”
– don't bcast: just perform locally

– atomicity?

– sequential consistency

Vector timestamps

● Logical time imposes a total order
– this orders events that don't need to be ordered

● Weak logical time
– same properties 1-4 as before, but

– logical times are only partially ordered

● Vector timestamps
– weak logical time

– logical times ordered if and only if events are causally ordered

– each process maintains “known time” of every process
● send entire vector with each msg

Next lecture

● Consistent global snapshots

● Stable property detection

● Reading: Chapter 19

