Massachusetts Institute of Technology Handout 5
6.852: Distributed Algorithms
Prof. Nancy Lynch February 14, 2008

Problem Set 1, Part b

Due: Thursday, February 21, 2008

Reading:

Sections 4.2-4.4, 5.1, 6.1-6.3 of Distributed Algorithms

Reading for next week: Sections 6.4-6.7, 7.1-7.3 of Distributed Algorithms
Aguilera, Toueg paper, listed in Handout 3
(Optional) Keidar, Rajsbaum paper

Problems:
0. Email Calvin to join the course mailing list and to select a problem set to grade, if you have not already
done so (details on course website).
1. (a) Exercise 4.3 (Recall that the number of messages is at most diam|E|, which is O(n?).)

(b) Show a weighted digraph (with nonnegative edge weights) with 5 nodes (including a distinguished
source node) such that some node changes its parent component 4 times in an execution of
BellmanFord, or else prove that no such graph exists.

(¢c) Show a weighted digraph (with nonnegative edge weights) with 5 nodes (including a distinguished
source node) such that two nodes change their parent components 4 times each in an execution
of BellmanFord, or else prove that no such graph exists.

2. Consider a variation of the Shortest Paths problem described in Section 4.3 of the textbook where:

A.

B.

C.

Halting is not required: we require only that eventually a shortest paths tree over the processes
exists and does not change,

Each process’s state contains a Boolean constant, source, which is set to true for ig and false for
every process i # ig, and

(modified:) Except for source and edge weight constants, the initial state of each process is
arbitrary: each non-source, non-weight state variable v of a process, (including any rounds or
status variables), is initially set to an arbitrary value from type(v).

Note that these conditions mean that different processes might think they are in different rounds, and
processes can’t tell if they are just starting an algorithm execution or are in the middle of an execution.

(a)

Explain informally why the BellmanFord algorithm described on p. 62 of the textbook does not
solve this new version of the Shortest Paths problem.

Describe informally a modified version of BellmanFord that solves the Shortest Paths problem
under these conditions.

Give pseudocode in the style in the book for your new algorithm.

Think about how you would prove your algorithm correct. (Don’t turn anything in for this part.)
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3.

Recall that SynchGHS proceeds in phases, each of which consists of a fixed number of rounds upon
which processes agree ahead of time. We argued that this fixed number can be O(n), where n is the
number of nodes in the network graph. Determine constants a and b such that every phase can be
an + b rounds (i.e., no phase requires more than an + b rounds), and argue that an + b rounds are
sufficient for any phase. Try to find the smallest possible value for a and b, particularly a. (Do not try
to improve SynchGHS; just analyze it as described on page 67 of the book.)

Consider the following variant of the coordinated attack problem from Section 5.1 (the one that is
supposed to tolerate message losses). Assume that the network is a complete graph of n = 4 nodes.
The termination and validity requirements are the same as those in Section 5.1. However, the agreement
requirement is weakened to say: “If any process decides 1, then at least three processes decide 1.” Is
this problem solvable or unsolvable? Prove.

Section 6.3.3 contains a simple algorithm (TurpinCoan) for Byzantine agreement on an arbitrary value
domain V. This algorithm uses a Byzantine agreement algorithm for bits as a “subroutine”. At the
cost of two extra rounds, this algorithm manages to substantially reduce the bit complexity, over the
standard Exponential Information Gathering Byzantine Agreement algorithm for V.

(a) Read the description of this algorithm, and its correctness proof.

(b) Do Exercise 6.22, which asks you to generalize the algorithm slightly.

Modify the FloodSet algorithm of Section 6.2.1 by adding a local early decision test condition, in order
to obtain the following additional early decision time bound property:

If the execution has only f’ < f failures, then all nonfaulty processes decide (but don’t halt) by the
end of round f’ + 2.

Prove that your algorithm works, that is, that it solves the stopping agreement problem for stopping
failures, and that it has the additional time bound property.

Note: Recall that we require the uniformity property, which says that all processes that decide (even
if they later fail), decide on the same value.



