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Abstract. The problem of implementing a shared object of one type from shared objects of other
types has been extensively researched. Recent focus has mostly been on wait-free implementations,
which permit every process to complete its operations on implemented objects, regardless of the
speeds of other processes. It is known that shared objects of different types have differing abilities to
support wait-free implementations. It is therefore natural to want to arrange types in a hierarchy that
reflects their relative abilities to support wait-free implementations. In this paper, we formally define
robustness and other desirable properties of hierarchies. Roughly speaking, a hierarchy is robust if
each type is “stronger” than any combination of lower level types. We study two specific hierarchies:
one, that we call hm

r , in which the level of a type is based on the ability of an unbounded number of
objects of that type, and another hierarchy, that we call h1

r , in which a type’s level is based on the
ability of a fixed number of objects of that type. We prove that resource bounded hierarchies, such as
h1

r and its variants, are not robust. We also establish the unique importance of hm
r : every nontrivial

robust hierarchy, if one exists, is necessarily a “coarsening” of hm
r .

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—shared memory; B.4.3
[Input/Output and Data Communications]: Interconnections (subsystems)—asynchronous/synchro-
nous operation; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures (Multiproces-
sors)—multiple-instruction-stream, multiple-data-stream processor (MIMD); D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.3 [Programming Languages]: Language Constructs and
Features—abstract data types, concurrent programming structures; D.4.1 [Operating Systems]: Process
Management—concurrency, multiprocessing/multiprogramming, synchronization; D.4.7 [Operating Sys-
tems]: Organization and Design—distributed systems

General Terms: Algorithms, Reliability, Theory
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1. Introduction

Our study concerns concurrent systems in which processes communicate via
shared objects. Processes are asynchronous: there are no bounds on their relative

A preliminary version of this paper appeared in Proceedings of the 12th Annual ACM Symposium on
Principles of Distributed Computing (Ithaca, N.Y., Aug. 15–18). ACM, New York, 1993, pp. 145–158.
This work was supported by the National Science Foundations (NSF) grants CCR 91-02231 and CCR
94-10421 and a Dartmouth College Startup grant.
Author’s address: 6211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH 03755;
e-mail: prasad@cs.dartmouth.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
q 1997 ACM 0004-5411/97/0700-0592 $03.50

Journal of the ACM, Vol. 44, No. 4, July 1997, pp. 592–614.



speeds. Objects are typed. An object’s type specifies the operations that may be
invoked and the sequential behavior: the legitimate responses corresponding to
each sequence of nonoverlapping operations. For example, an object of type
register supports the operations read and write v, and has the following
sequential behavior: a read operation returns the value written by the latest
preceding write operation.

In a concurrent system, operations applied by different processes on the same
object may overlap in time. Since the type of an object does not specify the
behavior of the object in the presence of such overlapping operations, it is
necessary to resort to some additional criterion of correctness. A common
criterion, and the one used in this work, is linearizability [Herlihy and Wing 1990].
By this criterion, each operation, spanning over an interval of time from the
invocation of the operation to its response, must appear to occur at some instant
in this interval.

In most systems, simple shared objects, such as registers and test&set objects,
are supported in hardware, but more complex objects, such as queues, stacks, and
sets, are not. Thus, complex shared objects must be implemented in software.
This observation led to extensive research on the “implementation problem”,
which may be phrased as follows: Given a type T, a positive integer n and a set 6
of types, implement an object of type T, that may be shared by up to n processes,
using only objects belonging to the types in 6. If such an implementation exists,
we say that 6 implements T for n processes.

Our study is restricted to implementations that are wait-free. An implementa-
tion is wait-free if every process can complete every operation on the imple-
mented object in a finite number of its own steps, regardless of the execution
speeds of the remaining processes. Henceforth, we will use the terms implemen-
tation and implement as shorthands for wait-free implementation and wait-free
implement, respectively.

It turns out that types differ in their ability to support implementations. To
make this notion precise, we introduce a definition: A type U is universal for n
processes if, for all types T, {U, register } implements T for n processes
[Herlihy 1991]. For example, to state that queue is universal for two processes
[Herlihy 1991] simply means that, no matter what type T we pick, it is possible to
implement an object of type T, shared by two processes, using only queues and
registers.1 Similarly, stating that queue is not universal for three processes
[Herlihy 1991] means that there is some type T such that there is no implemen-
tation of an object of type T, shared by three processes, using only queues and
registers. Thus, if a type U is universal for n processes but not for n 1 1
processes, it means that, using registers and objects of type U, we can implement
an object of any type for n processes, but there is at least one type such that we
cannot implement an object of this type for n 1 1 processes. We say that a type
U is universal if, for all n $ 1, U is universal for n processes.

Clearly, for any type, the maximum number of processes for which it is
universal is a measure of its ability to support implementations. By this measure,
types do differ in their abilities. For example, compare &swap is universal
[Herlihy 1991], test &set is universal for 2 processes, but not for 3 processes

1 We will use the typewriter font for types. Thus, “queue ” refers to the type and “queue” refers to an
object of this type.
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[Loui and Abu-Amara 1987; Herlihy 1991], and register is universal for 1
process, but not for 2 processes.2 In fact, for each positive integer k, there is a
type that is universal for k processes, but not for k 1 1 processes [Jayanti and
Toueg 1992]. Our study of classifying types is motivated by these differences in
the abilities of types.

We seek to classify types into a hierarchy. A hierarchy assigns a level to each
type, where a level is a positive integer or `. There are several properties that
one intuitively associates with a hierarchy. For instance, one expects that a type is
assigned a high level in the hierarchy only if it is “strong”. We capture this with a
property that requires each type at level n to be universal for n or more
processes, and call any hierarchy that satisfies this property a wait-free hierarchy.
One also expects that each type, at any given level, is “stronger” than any
combination of types from lower levels. We formalize this with a property that
we call robustness. This work investigates the existence of robust wait-free
hierarchies.

Herlihy [1991] was the first to propose and study a hierarchy of types. There
was however an inconsistency in Herlihy [1991] between the formal definition of
the hierarchy and its subsequent interpretation. We identify this ambiguity and
investigate the two principal hierarchies that result from different ways of
resolving this ambiguity. Roughly speaking, in the first hierarchy, which we call
h1

r , and in its variants, the level of a type is based on the capabilities of a fixed
number of objects of that type. In contrast, in the second hierarchy, which we call
hm

r , a type’s level is based on the capabilities of an unbounded number of objects
of that type. The main result of this paper is that the hierarchies, such as h1

r , that
are based on resource bounds, are not robust. The basic idea of the proof is as
follows: We define a new type called weak-sticky and show that h1

r maps this
type to a low level. Thus, the hierarchy h1

r classifies this type as “weak”. But then
we show that weak-sticky is far from being weak: it is universal.

We also establish the unique importance of the hierarchy hm
r by showing that

every robust wait-free hierarchy (if one exists) is necessarily a “coarsening” of hm
r .

Our work leaves open the question of whether there is a nontrivial robust
wait-free hierarchy.

The paper is organized as follows: In Section 2, we describe the model. In
Section 3, we state the desirable properties of a hierarchy and define the
hierarchies h1

r and hm
r . We also show that a robust wait-free hierarchy, if it exists,

is necessarily a “coarsening” of hm
r . In Section 4, we present the main result that

h1
r is not a robust hierarchy. We conclude in Section 5 with a mention of recent

advances on the question of whether a robust wait-free hierarchy exists.

2. Model

Our system model is similar to the one given by Herlihy [1991]. We still repeat
the essential elements of this model here so that we can present a rigorous
definition of linearizability, which is needed in some proofs.

2.1. I/O AUTOMATA. We model processes and objects as I/O automata. Our
description of I/O automata omits many details. The original work by Lynch and

2 See, for example, Chor et al. [1987], Dolev et al. [1987], Loui and Abu-Amara [1987], and Herlihy
[1991].
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Tuttle [1988] gives a complete treatment and the work by Herlihy presents the
use of I/O automata in modeling shared memory systems [Herlihy 1991].

An I/O automaton (henceforth abbreviated as automaton) is described by a set
of states, a set of events (partitioned into input, output, and internal events), and
a transition relation. An execution of an automaton is a sequence s0, e1, s1, e2,
s2, . . . of alternating states and events such that s0 is a starting state and (si,
ei11, si11) is a legal transition. A history of an automaton is the subsequence of
events in an execution. Given “compatible” automata A1, A2, . . . , Ak,3 they can
be composed to obtain a new automaton. Let E be an execution of such a
composed automaton and H be the corresponding history. The history of
component Ai in E is the subsequence of H consisting only of the events of Ai.

2.2. TYPE. A type is a tuple (OP, RES, Q, d), where OP is a set of
operations, RES is a set of responses, Q is a set of states, and d # Q 3 OP 3
Q 3 RES is a relation, known as the sequential specification of the type.
Intuitively, if (s, op, s9, res) [ d it means the following: applying the operation
op to an object in state s can cause the object to move to state s9 and return the
response res. d is required to satisfy two properties:

Totality: For all s [ Q and op [ OP, there is at least one pair (s9, res)
such that (s, op, s9, res) [ d. (This condition ensures that it is legitimate to
apply any operation in any state.)

Computability: There is a computable function f: Q 3 OP 3 Q 3 RES such
that, for all s [ Q and op [ OP, f(s, op) 5 (s9, res) implies (s, op, s9,
res) [ d. (This condition ensures that a sequential implementation of an
object of this type, that is, an implementation that is accessed by only one
process, is feasible.)

A type is deterministic if, for all s [ Q and op [ OP, there is at most one pair
(s9, res) such that (s, op, s9, res) [ d. Thus, for deterministic types, d can be
regarded as a function d: Q 3 OP 3 Q 3 RES.

A sequence S 5 op1, res1, op2, res2, . . . , opk, resk is legal from state s1 of T
if there are states s2, s3, . . . , sk11 such that, for all i, 1 # i # k, (s i, opi,
s i11, resi) [ d.

The type consensus is central to this paper. For this type, OP 5 {propose 0,
propose 1}, RES 5 {0, 1}, and Q 5 {S, S0, S1}. Its sequential specification is
given in Figure 1. (In the figure, vertices represent states and there is a directed
edge labeled (op, res) from vertex s to vertex s9 if and only if (s, op, s9, res)
[ d.)

3 Automata are compatible if they do not share output events and the internal events of each are
disjoint from all events of all others.

FIG. 1. Sequential specification of consensus .
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2.3. OBJECTS, PROCESSES, AND CONCURRENT SYSTEM. Objects and processes
are modeled as automata. Each object has three attributes: a name, a type T and
an initial value s, which is a state of T. Each process has a name attribute. Below,
we define a concurrent system as a composition of processes and objects, where
every process can access every object.

A concurrent system consisting of processes P1, P2, . . . , Pn and objects O1, . . . ,
Om is defined as the automaton composed from the process automata Pi (1 #
i # n) and the object automata Oj (1 # j # m). We write (P1, P2, . . . , Pn;
O1, . . . , Om) to denote such a concurrent system. For each object Oj of type
T 5 (OP, RES, Q, d), its only input events are invoke(Pi, op, Oj) and only
output events are respond(Pi, res, Oj) (1 # i # n, op [ OP, res [ RES). We
call these events invocations and responses, respectively. For each process Pi, its
only input events are respond(Pi, res, Oj) and its only output events are
invoke(Pi, op, Oj).

Let E be an execution of a concurrent system and H be the corresponding
history. A response r matches an invocation i in H if i is the most recent invocation
preceding r such that the process and object names of i and r agree. An operation
execution in H, abbreviated hereafter as operation in H, is a pair of events, an
invocation and its matching response.4 An incomplete operation in H is an
invocation with no matching response. History H is a complete history if it has no
incomplete operations.

A precedence relation ,H is defined on the events of H as follows: e ,H e9 if
and only if event e precedes event e9 in H. We abuse notation and extend ,H to
also relate “nonoverlapping” operations: For any two operations oper and oper9
in H, oper ,H oper9 if the response of oper precedes the invocation of oper9. We
say that oper precedes oper9 in H. Two operations unrelated by ,H (i.e., neither
operation precedes the other) are said to be concurrent in H. History H is
sequential if it has no concurrent operations.

We assume that a process is a single thread of control: after invoking an
operation on an object, it waits to receive the response before it invokes another
operation (on any object). We also assume that, for any process Pi and object Oj,
the interaction between Pi and Oj is proper: first Pi invokes an operation on Oj,
then Oj responds, and then Pi invokes on Oj, then Oj responds, and so on.
Formalizing this is straightforward and is omitted.

2.4. LINEARIZABILITY. Linearizability, a correctness criterion for concurrent
objects, is due to Herlihy and Wing [1990]. Informally, linearizability requires
that each operation, spanning over an interval of time from its invocation to its
response, appears to take effect at some instant in this interval.

Let H be the history of some object 2 in an execution of a concurrent system.
Let T 5 (OP, RES, Q, d) be a type and s be a state of T. A linearization of H
with respect to (T, s) is a sequence S with the following properties:

(1) The elements of S are invocations and responses of 2. S is sequential: each
invocation is immediately followed by a matching response. S is complete:
each invocation has a matching response.

4 Thus, the term, operation, is overloaded. It will be however clear from the context whether a
particular use of this term refers to an element of OP of a type T 5 (OP, RES, Q, d) or to an
operation execution in a history.
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(2) S includes every complete operation in H.
(3) Let invoke(Pi, op, 2) be an incomplete operation in H (i.e., it has no

matching response). Then, either S does not include this incomplete opera-
tion or S includes a complete operation (invoke(Pi, op, 2), respond(Pi, res,
2)) (for some res [ RES).
Intuitively, this means that an incomplete operation cannot have partial
effect: it has either no effect at all or it has full effect.

(4) S includes no operations other than the ones mentioned in (2) or (3).
(5) For all operations oper, oper9 in S, if oper ,H oper9, then oper ,S oper9.

Thus, the order of nonoverlapping operations in H is preserved in S.
(6) S is legal from state s of T.

Notice that H may have no linearization or may have several different lineariza-
tions. We say H is linearizable with respect to (T, s) if H has a linearization with
respect to (T, s).

We mentioned before that each object has the attributes of type and initial
value. The following requirement states what it means to have these attributes.

If 2 is an object of type T and initial value s, then each history of 2 is linearizable
with respect to (T, s).

2.5. IMPLEMENTATION. Our notion of an implementation is similar to Herli-
hy’s [1991] with one exception: Herlihy’s definition concerns implementing an
object from a single “representation” object, but our definition concerns imple-
menting an object from multiple representation objects. Our definition below is
informal, but it can be formalized using the approach in Herlihy [1991].

Let T1, T2, . . . be any finite or infinite sequence of types (a type may appear
more than once in the sequence). An implementation of object 2 of type T 5 (OP,
RES, Q, d) and initial value s from objects O1, O2, . . . of types T1, T2, . . . and
initial values s1, s2, . . . , respectively, for process names P1, P2, . . . , Pn, consists
of a set of procedures Apply (Pi, op, 2) (for each process name Pi, 1 # i # n,
and operation op [ OP). Apply (Pi, op, 2) specifies how the process, named
Pi, should “simulate” the operation op on 2 in terms of operations on O1,
O2, . . . ; Pi invokes operation op on 2 by calling Apply (Pi, op, 2). The
operation completes when the procedure terminates. The response (from 2) to
the operation is the value returned by the procedure. The implementation must
satisfy the following correctness condition: If P1, . . . , Pn are the names of
arbitrary process automata, then the history of 2, in every execution of (P1,
P2, . . . , Pn; 2), is linearizable with respect to (T, s). We say 2 is the derived
object and O1, O2, . . . are the base objects.5

Let T be a type, s be a state of T, and 6 be a set of types. We say (T, s) has an
implementation from 6 for n processes if there are sequences T1, T2, . . . and s1,
s2, . . . such that the following conditions hold:

(1) For all i, Ti is in 6 and si is a state of Ti.
(2) Given any sequence of objects O1, O2, . . . , where Oi’s type is Ti and initial

value is si, it is possible to implement an object of type T and initial value s
from O1, O2, . . . , for process names P1, P2, . . . , Pn.

5 In the terminology of Herlihy [1991], base objects are representation objects.
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We say T has an implementation from 6 for n processes if, for each state s of T,
(T, s) has an implementation from 6 for n processes.

2.6. WAIT-FREE IMPLEMENTATION. Process P crashes in execution E if E is an
infinite execution and P has only a finite number of events in E; P is correct in E,
otherwise. An implementation of object 2 for processes P1, P2, . . . , Pn is wait-free
if, in all infinite executions of (P1, P2, . . . , Pn; 2) and for all Pi (1 # i # n),
the following is true: If Pi has no incomplete operations on the base objects of 2
and if Pi is correct, then Pi has no incomplete operation on 2. In this paper,
unless qualified otherwise, implementation and implement stand for wait-free
implementation and wait-free implement, respectively.

2.7. UNIVERSALITY. A set 6 of types is universal for n processes if every type
has an implementation from 6 ø {register } for n processes. 6 is universal if,
for all n . 0, 6 is universal for n processes. If a singleton set {T} is universal,
we simply say “T is universal”.

3. Classifying Types

Our objective is to classify types into a hierarchy so that types at higher levels
have a greater ability to support implementations than types at lower levels. In
this section, we formally state the properties we seek in a hierarchy, define hm

r

and h1
r , the two specific hierarchies investigated in this paper, and present some

of their properties.

3.1. DESIRABLE PROPERTIES OF HIERARCHIES. A hierarchy of types (hence-
forth abbreviated as hierarchy) is a function that maps types to levels in {1, 2,
3, . . .} ø {`}. We say that a type T is at level l in hierarchy h if h(T) 5 l. Since
hierarchies are just functions, any specific hierarchy is interesting only if it has
“useful” properties. We identify such properties below.

P1. If a type is not universal for n processes, then that type is at level n 2 1 or
lower.

P2. If a type is universal for n processes, then that type is at level n or higher.

The first property ensures that a type is not mapped to a higher level than its
ability suggests. The second property ensures that it is not mapped to a lower
level than its ability suggests. We call a hierarchy that has property P1 a wait-free
hierarchy, and a hierarchy that has properties P1 and P2 a tight hierarchy. Thus, in
a tight hierarchy, a type is at level n , ` if and only if it is universal for n
processes, but not for n 1 1 processes; it is at level ` if and only if it is universal.
Clearly, there is only one tight hierarchy. In contrast, there are several wait-free
hierarchies. For example, a tight hierarchy is a fortiori a wait-free hierarchy. So is
the trivial hierarchy which maps every type to level 1.

It is natural to seek a hierarchy in which each type is “stronger” than any
combination of lower level types. This motivates the next property:

P3. Let T be a type at level n. Let m , n and 6 be a set of types such that
each T9 [ 6 is at level m or lower. Then, T has no implementation from
6 for n processes.
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A hierarchy that has property P3 is called a robust hierarchy. Robustness plays an
important role in analyzing the “power” of a set of types. We illustrate this with
an example. Consider the types test &set and fetch &add . Each of these is
known to be universal for two processes, but not for three processes [Herlihy
1991]. Based solely on this knowledge, can we conclude that the set {test &set ,
fetch &add} is also not universal for three processes? It is easy to see that the
answer depends on whether the (unique) tight hierarchy is robust or not. If it is
robust, we can draw such a conclusion. Otherwise, we cannot. More generally, if
the tight hierarchy is robust, a set of types is universal for n processes if and only
if the set contains a type that is universal for n processes. Thus, the difficult
problem of computing the combined power of a set of types reduces to the
simpler problem of computing the power of the individual types in the set. On
the other hand, if the tight hierarchy is not robust, a set of types could be
universal for n processes even if no type in the set is. Thus, it opens up the
possibility of implementing a universal type (e.g., compare &swap) from a set of
nonuniversal types (e.g., {test &set , fetch &add , . . .}).

3.2. HIERARCHIES hm
r AND h1

r . So far we have identified the desirable proper-
ties of a hierarchy, but have not addressed whether there is one with all of these
properties. We begin this study by considering the tight hierarchy that we will
denote as hm

r . Thus, for hm
r , robustness is the only one of our three properties

open for investigation.
The main drawback of hm

r , however, is its computability: there appears no easy
way of determining the level of a type in hm

r . Fortunately, this difficulty is
obviated by the following fundamental universality result due to Herlihy [1991].

THEOREM 3.2.1 (HERLIHY’S UNIVERSALITY RESULT). The type consensus is
universal.

As an immediate consequence of this result, a type T is universal for n processes
if and only if {T, register } implements consensus for n processes. This allows
us to redefine hm

r as follows:

Definition 3.2.2. For each type T, hm
r (T) is the maximum n such that

consensus has an implementation from {T, register } for n processes. If
there is no such maximum, hm

r (T) is `. (Notice that there is no limit on the
number of registers or on the number of objects of type T that may be used in
the implementation.)

In addition to hm
r , in which the level of a type is based on the ability of an

unbounded number of objects of that type, one might also consider “resource
bounded hierarchies” where a type’s level is based on the ability of a fixed
number of objects of that type. One such hierarchy, that we call h1

r in this paper,
is defined below. (The formal definition of the hierarchy in Herlihy [1991]
corresponds to h1

r , but in many results of that paper hm
r is used as the hierarchy.)

Definition 3.2.3. For each type T, h1
r (T) is the maximum n such that

consensus has an implementation from {T, register } for n processes, where
the implementation is restricted to use only one object of type T. (There is no
limit on the number of registers that may be used in the implementation.) If
there is no such maximum, h1

r (T) is `.
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(In the names of the hierarchies hm
r and h1

r , the subscript indicates whether the
implementation may use only 1 or many objects of the argument type. The
superscript r indicates that the implementation may use registers.)

Is h1
r an interesting hierarchy? It is immediate from Herlihy’s universality

result that h1
r is a wait-free hierarchy (i.e., it has property P1). But is h1

r tight
and/or robust? Is there reason to prefer the definition of h1

r over hm
r ? As we

argue below, the answers depend on whether or not h1
r 5 hm

r . (For any two
hierarchies g and h, we say g 5 h if and only if, for all types T, g(T) 5 h(T).)

If h1
r 5 hm

r , computing the level of a type in hm
r becomes simpler. To see this,

observe that there are two steps in determining that a type T lies at level n in hm
r .

First, we must show that a consensus object, shared by n processes, can be
implemented using only registers and objects of type T. The second (and perhaps
the harder) step is to show that it is impossible to implement a consensus object,
shared by n 1 1 processes, using only registers and objects of type T. If h1

r 5 hm
r ,

the second step becomes easier: we will need to show the impossibility only in the
case when just a single object of type T is used.

If h1
r Þ hm

r , the hierarchy h1
r is neither tight nor robust and is thus hardly

interesting. This and some other properties of h1
r and hm

r are proved below.

3.3. PROPERTIES OF h1
r AND hm

r

PROPOSITION 3.3.1. If h is a wait-free hierarchy, then h(register ) 5 1.

PROOF. There exist types (e.g., queue ) that have no implementation from
register for two or more processes [Herlihy 1991]. Thus, register is not
universal for two processes and so, by definition of a wait-free hierarchy, it must
be at level less than 2. e

PROPOSITION 3.3.2. h1
r and hm

r are both wait-free hierarchies.

PROOF. Follows trivially from Herlihy’s universality result. e

A level k in a hierarchy h is nonempty if there is a type T such that h(T) 5 k.

PROPOSITION 3.3.3. Each level k, k [ {1, 2, . . .} ø {`}, is nonempty in both
h1

r and hm
r .

PROOF. It was shown in Jayanti and Toueg [1992] that for all k [ {1, 2, . . .}
ø {`}, there is a type Tk such that (i) there is an implementation of
consensus from Tk for k processes that uses only one object of Tk, and (ii)
there is no implementation of consensus from {Tk, register } for k 1 1
processes. Thus, Tk lies at level k in both h1

r and hm
r . Hence the proposition. e

Our next result highlights the importance of hm
r in the study of robust wait-free

hierarchies. Specifically, it states that every robust wait-free hierarchy is a
“coarsening” of hm

r . We begin with the definition of coarsening.
Let s 5 (l1, l2, . . .) be a finite/infinite sequence such that l1 5 1, l1 , l2 ,

l3
. . . , and l i [ {1, 2, 3, . . .} ø {`}. We say that hierarchy g is a coarsening of

hierarchy h with respect to s if, for all types T, we have:

(1) If l i # h(T) , l i11, then g(T) 5 l i.
(2) If l i # h(T) and l i is the last element of s, then g(T) 5 l i.
(3) If h(T) 5 ` and s is infinite, then g(T) 5 `.
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Intuitively, levels l i, l i 1 1, . . . , l i11 2 1 in hierarchy h are lumped into level
l i of hierarchy g, causing levels l i 1 1 . . . l i11 2 1 to be empty in g. The
following are some examples.

—Let s 5 (1, 3, 5, . . .). Let g be the coarsening of hm
r with respect to s. Then,

every odd level i of g contains all types that are in levels i and i 1 1 of hm
r . All

even levels of g are empty. Level ` of g contains exactly the same types as
level ` of hm

r .
—Let s 5 (1, 3). Let g be the coarsening of hm

r with respect to s. Then, level 1 of
g contains the types in levels 1 and 2 of hm

r , and level 3 of g contains the types
in levels 3, 4, . . . and level ` of hm

r . Level 2, levels 4, 5, . . . and level ` of g are
empty.

We say that hierarchy g is a coarsening of hierarchy h if there is a s of the form
1 5 l1 , l2 , l3

. . . such that g is a coarsening of h with respect to s. It is easy
to verify that (i) every hierarchy is a coarsening of itself, and (ii) if h is a
wait-free hierarchy, so is every coarsening of h.

THEOREM 3.3.4. If h is a robust wait-free hierarchy, then h is a coarsening of hm
r .

PROOF. Assume that h is a robust wait-free hierarchy, and is not a coarsening
of hm

r . Let s 5 (l1, l2, . . .), where 1 5 l1 , l2 , l3
. . . are all the nonempty

levels of h. Let g be the coarsening of hm
r with respect to s. From our assumption

that h is not a coarsening of hm
r , we have h Þ g. Thus, there is a type T such that

h(T) Þ g(T). Let m 5 g(T) and n 5 h(T). By definition of g, a level k of g is
nonempty if and only if level k of h is nonempty. Together with m Þ n, this
implies that there exist types T9 and T0, each different from T, such that g(T9)
5 n and h(T0) 5 m. Since m Þ n, we have two cases to consider.

(1) m . n. Since g is a coarsening of hm
r and g(T) 5 m, it follows that hm

r (T)
$ m. Since hm

r satisfies Property P1, it follows that T is universal for m
processes (hm

r satisfies Properties P1 and P2 because hm
r denotes the tight

hierarchy). In particular, there is an implementation of T0 from {T, regis-
ter } for m processes. Since h(T) 5 n , m 5 h(T0), h is not robust. This
is a contradiction.

(2) m , n. We have the following facts: g is a coarsening of hm
r , level n of g is

nonempty (because g(T9) 5 n), n . m, and g(T) 5 m. These facts imply
m # hm

r (T) , n. Since hm
r satisfies Property P2, it follows that T is not

universal for n processes. Since h(T) 5 n, it follows that h is not a wait-free
hierarchy. This is a contradiction.

This completes the proof of the theorem. e

PROPOSITION 3.3.5. If h1
r Þ hm

r , then h1
r is neither tight nor robust.

PROOF. Since hm
r is the (unique) tight hierarchy, h1

r Þ hm
r implies h1

r is not
tight. Further, if h1

r Þ hm
r , it follows from Proposition 3.3.3 that h1

r is not a
coarsening of hm

r . Thus, by Theorem 3.3.4 either h1
r is not a wait-free hierarchy or

h1
r is not robust. Since h1

r is a wait-free hierarchy (Proposition 3.3.2), it follows
that h1

r is not robust. e

3.4. STRENGTH OF TYPES. We now remark on our expectation that in a
hierarchy each type should be “stronger” than every lower-level type. As we
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explain below, this expectation holds for hm
r , provided that we interpret the

phrase “type T1 is stronger than type T2” appropriately.
One interpretation of “T1 is stronger than T2” is that every problem that can

be solved using objects of type T2 can also be solved using objects of type T1;
furthermore, there is at least one problem that can be solved using objects of
type T1 but cannot be solved using objects of type T2. We call this the strong
interpretation. For this interpretation, our expectation that each type should be
stronger than every lower-level type does not hold for hm

r , as is explained in the
next paragraph.

Consider the 2-set agreement problem among 2n 1 1 processes [Chaudhuri
1990]. This problem can be solved using a single object that has the following
behavior: the object remembers the first two values proposed to it and, for each
operation, it returns one of these two values nondeterministically as its response
[Herlihy and Shavit 1993; Rachman 1994]. The type of this object is at level 1 of
hm

r [Rachman 1994]. It has also been shown that the 2-set agreement problem
among 2n 1 1 processes cannot be solved using only n-consensus objects and
registers,6 despite the fact that the type n-consensus is at level n of hm

r .7 We
conclude that, for all n $ 2, there is a problem—the 2-set agreement problem
among 2n 1 1 processes—that cannot be solved using objects of a type at level n
of hm

r , but can be solved using objects of a type at level 1 of hm
r . This implies that,

if we use the strong interpretation, our expectation that each type should be
stronger than every lower-level type does not hold for hm

r .
A second interpretation of “T1 is stronger than T2” is that T1 is universal for a

larger number of processes than T2. We call this the weak interpretation. In this
interpretation, the strength of a type is associated with the maximum number of
processes for which arbitrary synchronization tasks are feasible using only objects
of that type and registers. For this interpretation, it is immediate from the
definition of hm

r that each type is stronger than every lower level type. Further-
more, if hm

r is robust, then each type is stronger than any set of types from lower
levels. We explain below how a comparison based on this weak interpretation is
useful.

Imagine the designer of a multi-processor system who has to decide the type of
shared objects that should be supported in hardware. For specificity, suppose
that he has to choose between the types T1 and T2. Which should he pick? Since
the purpose of shared objects is to allow multiple processes to synchronize, the
more desirable type is the one that lets a greater number of processes to
synchronize. Unfortunately, the designer is not likely to have any knowledge of
the kinds of synchronization tasks that potential applications would require
processes to engage in. That being the case, the best that the designer can do is
to pick the type that maximizes the number of processes among which arbitrary
synchronization tasks are feasible. In other words, the preferred type is the one
that is universal for a larger number of processes. Thus, between types T1 and
T2, the designer will choose the one that is stronger by the weak interpretation.

6 See, for example, Herlihy and Shavit [1993], Borowsky and Gafni [1993], Saks and Zaharoglou
[1993], and Herlihy and Rajsbaum [1994].
7 The following is an informal specification of n-consensus. To the first n accesses an n-consensus
object responds just like a consensus object. The (n 1 1)st and later accesses get arbitrary
nondeterministic responses.
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Hereafter, when we say that one type is stronger than another, it is always with
respect to this weak interpretation.

4. The Main Theorem: h1
r is neither Robust nor Tight

In this section, we prove the main theorem that h1
r is neither robust nor tight. We

obtain this result by specifying a type weak-sticky with the following property:
To implement consensus from {weak-sticky , register } for n processes,
n 2 1 weak-sticky objects are both necessary and sufficient. Thus, h1

r (weak-
sticky ) 5 2 and hm

r (weak-sticky ) 5 `. It follows from Proposition 3.3.5 that
h1

r is neither robust nor tight.8

The type weak-sticky is specified in Section 4.1. The sufficient and the
necessary conditions on the number of weak-sticky objects needed to implement
a consensus object are proved in Sections 4.2 and 4.3, respectively.

4.1. SPECIFICATION OF THE TYPE weak-sticky . Consider the type sticky
in Figure 2. It supports two operations, L-op and R-op, and responds with either
L-first or R-first. (L and R stand for Left and Right.) If L-op is applied on a
sticky object 2, initialized to S', 2 returns L-first as the response. Furthermore,
2 returns L-first to all subsequent operations, reflecting the fact that L-op was
the first operation applied on 2. The behavior is symmetric if, instead of L-op,
R-op was the first operation applied on 2. In essence, the first operation “sticks”
to 2 and determines the response for all operations. sticky is similar to the
consensus [Herlihy 1991] and sticky -bit [Plotkin 1989] types.

Now consider the type weak-sticky , a variant of sticky , shown in Figure 3.
Let 2 be a weak-sticky object, initialized to S'. If L-op is the first operation
applied on 2, 2 behaves the same as before. But, weak-sticky lacks the
symmetry of sticky : If R-op is the first operation applied on 2, R-op sticks to
2 as before. However, if R-op is applied for the second time, it “unsticks” and 2
starts behaving as though it had been stuck with L-op all along.

The following is an immediate consequence of the definition of weak-sticky .

LEMMA 4.1.1. Let 2 be a weak-sticky object, initialized to S'. In any execution
in which R-op is applied at most once on 2, we have:

(1) If r1 and r2 are the responses to any two operations on 2, then r1 5 r2.

8 A more direct argument that h1
r is not robust is as follows. Since hm

r (weak-sticky ) 5 `, it follows
that every type has an implementation from {weak-sticky , register } for any number of
processes. In particular, even a type mapped to level 3 or higher by h1

r has an implementation from
{weak-sticky , register } for any number of processes. This, together with the fact that h1

r maps
weak-sticky to level 2 and register to level 1, implies that h1

r does not satisfy Property P3 and
hence is not robust.

FIG. 2. Sequential specification of the type sticky .
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(2) If 2 returns a response X-first (X [ {L, R}), then an invocation of X-op
precedes this response.

4.2. UPPER BOUND. We show that n 2 1 weak-sticky objects and (some
number of) registers suffice to implement a consensus object for n processes.

We begin by presenting our conventions with respect to implementations of
consensus objects.

—As evident from the specification of consensus in Figure 1, implementing a
consensus object whose initial value is S0 is trivial: a response of 0 can be
returned to every operation. (Initial value of S1 is similarly trivial.) Thus, the
only nontrivial case is to implement a consensus object of initial value S'. So
when we refer to an implementation as an implementation of consensus, we
mean that it is an implementation of (consensus , S').

—If 2 is a consensus object implemented for processes P1, P2, . . . , Pn, then in
any execution of (P1, P2, . . . , Pn; 2), 2 satisfies two properties: (i) 2 returns
the same response to every invocation, and (ii) 2 returns a response v only if
propose v was already invoked. These are known as the agreement and the
validity properties, respectively. They follow from the specification of consen-
sus and the criterion of linearizability.

—By the agreement property of consensus, if a process proposes to a consensus
object more than once, the object’s responses to the second and subsequent
proposals are identical to the object’s response to the first proposal by the
process. We therefore assume that no process proposes to a consensus object
more than once.

We now present our implementation of consensus . The implementation is
recursive. Let ( j denote the implementation of consensus from {weak-
sticky , register } for processes P1, P2, . . . , Pj. The base case is to derive (1,
the implementation of consensus for the single process P1, and is trivial: if 21
is the derived object, Apply (P1, propose v1, 21) simply returns v1. The recursive
step of deriving (n from (n21 (for n $ 2) is presented in Figure 4.

LEMMA 4.2.1. The implementation (n in Figure 4 is a correct implementation of
consensus from {weak-sticky , register } for processes P1, P2, . . . , Pn. (n

requires n 2 1 weak-sticky objects and 2(n 2 1) registers.

PROOF. Notice that (n requires one weak-sticky object and two registers in
addition to those required by (n21. Furthermore, (1 (described above) requires

FIG. 3. Sequential specification of the type weak-sticky .
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no weak-sticky objects and no registers. This implies that (n requires n 2 1
weak-sticky objects and 2(n 2 1) registers.

We prove the correctness of (n by induction. The following is the induction
hypothesis: for 1 # j # n 2 1, ( j is a correct implementation of consensus
for processes P1, P2, . . . , Pj. The base case, namely, that (1 (described before)
is a correct implementation of consensus for P1, is obvious. The induction step is
proved below through several simple claims.

Let 2n be a derived object of (n. Consider an execution E of the concurrent
system (P1, P2, . . . , Pn; 2n). Assume that each Pi executes Apply (Pi, propose
v i, 2n) at most once in E. We make the following claims about E. The proof of
each claim follows its statement:

C1. Every process that writes in the register LREG, writes the same value V in
LREG. Furthermore, V [ {v1, v2, . . . , vn21}.
The claim follows from the agreement and validity properties of 2n21.

C2. No process other than Pn writes in the register RREG. When Pn writes in
RREG, it writes the value vn.

C3. A process receives the response X-first from Ows (X [ {L, R}) only if some
process previously completed a write on the register XREG.
By Lemma 4.1.1(2) and the observation that R-op is applied at most once on
Ows, if a process receives the response X-first from Ows, then some process
Pk previously invoked X-op on Ows. By the implementation, this process Pk

completed a write on the register XREG before invoking X-op.

Consider the executions of Apply (Pi, propose v i, 2n) and Apply (Pj, propose
v j, 2n) by processes Pi and Pj, respectively. By Lemma 4.1.1(1) and the
observation that R-op is applied at most once on Ows, the responses received by
Pi and Pj from Ows are the same. Let X-first be this response (for some X [ {L,
R}). Thus, both Pi and Pj return the value in register XREG. From Claims C1,
C2, and C3 above, it follows that both Pi and Pj read the same value V in XREG

and that V [ {v1, v2, . . . , vn}. Thus, the value returned by both Pi and Pj is the
same and is from {v1, v2, . . . , vn}. We conclude that 2n satisfies agreement and
validity properties. It is obvious that the implementation is wait-free. Hence the
correctness of (n. e

FIG. 4. Recursive implementation of consensus from {weak-sticky , register } for n processes
(n $ 2).
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4.3. LOWER BOUND. We prove that any implementation of consensus from
{weak-sticky , register } for n processes requires at least n 2 1 weak-sticky
objects, regardless of how many registers it uses. We prove this lower bound in
three steps:

(1) We define the notion of 1-trap implementations. Roughly speaking, an
implementation is 1-trap if it is a wait-free implementation for all but at most
one correct process. Thus, at most one correct process blocks on such an
implementation, and the remaining correct processes complete their opera-
tions just as in a wait-free implementation. (The identity of the process that
might block is not known a priori.)

(2) We show that if a type T has a 1-trap implementation from register for n
processes, then any wait-free implementation of consensus from {T, regis-
ter } for n processes requires at least n 2 1 objects of type T.

(3) We show that weak-sticky has a 1-trap implementation from register .

4.3.1. k-TRAP IMPLEMENTATIONS. Roughly speaking, an implementation is
k-trap if there are at most k processes that, despite taking infinitely many steps,
cannot complete their operations on the implemented object. Formally, consider
an implementation of an object 2 for processes P1, P2, . . . , Pn. Let E be an
infinite execution of (P1, P2, . . . , Pn; 2). We say a process Pi blocks on 2 in E
if (i) Pi is correct (i.e., Pi has infinitely many events in E), (ii) Pi has no
incomplete operations on any of the base objects of 2, and (iii) Pi has an
incomplete operation on 2. An implementation of object 2 for processes P1,
P2, . . . , Pn is k-trap if, for all infinite executions E of (P1, P2, . . . , Pn; 2),
there are at most k processes that block on 2 in E. Notice that (i) a 0-trap
implementation is the same as a wait-free implementation, and (ii) in a k-trap
implementation, up to k processes may block unconditionally— even if there are
no process crashes, and even if there are no more than k processes that ever take
steps.

4.3.2. A GENERAL LEMMA FOR LOWER BOUNDS. We present a lemma that
establishes the utility of k-trap implementations in proving lower-bounds. The
proof of this lemma uses the following well-known impossibility result due to
Dolev et al. [1987] and Loui and Abu-Amara [1987]. This result is about the
consensus problem for n processes, defined informally as follows: Each process Pi

is initially given an input v i [ {0, 1}. Each correct process Pi must eventually
decide a value di such that (i) di [ {v1, v2, . . . , vn}, and (ii) for all correct
processes Pi and Pj, di 5 dj.

THEOREM 4.3.2.1 [DOLEV ET AL. 1987; LOUI AND ABU-AMARA 1987]. The
consensus problem for n processes has no solution if processes may communicate
only via registers and at most one process may crash.

LEMMA 4.3.2.2. Let T be any type such that for every state s of T, there is a
1-trap implementation (s of (T, s) from register for n processes. Then, any
wait-free implementation of consensus from {T, register } for n processes requires
at least n 2 1 objects of type T.

PROOF. Suppose that the lemma is false, and there is a wait-free implemen-
tation ) of consensus from {T, register } for n processes such that ) requires
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only n 2 2 objects of type T, initialized to some states s1, s2, . . . , sn22 of T,
and m registers (for some m $ 0). Consider the protocol 3 in Figure 5. Clearly,
processes communicate exclusively via registers in protocol 3. We argue below
that 3 solves the consensus problem for processes P1, P2, . . . , Pn even if at
most one of the processes may crash. By Theorem 4.3.2.1, such a protocol does
not exist. Hence the lemma.

We claim that at most n 2 2 correct processes fail to complete their
operations on 2. This follows from the following facts:

(1) Object 2 is implemented from O1, . . . , On22, R1, . . . , Rm. Each Oi is
1-trap: at most one process blocks on it.

(2) Every correct process completes all of its operations on the registers R1,
R2, . . . , Rm.

(3) The implementation of 2 from O1, . . . , On22, R1, . . . , Rm is wait-free.
Therefore, if a process Pk is correct and does not block on any of O1, . . . ,
On22, then Pk will eventually complete executing the procedure Apply (Pk,
propose vk, 2).

Therefore, if at most one of P1, P2, . . . , Pn crashes, there is still one process,
call it Pk, that neither crashes nor blocks on 2. This process Pk eventually writes
the response, call it V, returned by Apply (Pk, propose vk, 2) in register
DECISION. Since 2 satisfies validity, we have V [ {v1, v2, . . . , vn}. Since 2
satisfies agreement, no process ever writes a value different from V in register
DECISION. The protocol in Figure 5 ensures that every non-crashing process, even
if it blocks on a Oi, eventually reads the register DECISION and decides V. In
other words, 3 solves the consensus problem for P1, P2, . . . , Pn even if at most
a single process may crash. This completes the proof of the lemma. e

4.3.3. 1-TRAP IMPLEMENTATION OF weak-sticky . Recall that weak-sticky
has three states—S', SL, and SR. We now present a 1-trap implementation of
(weak-sticky , S') and 0-trap implementations of (weak-sticky , SL) and
(weak-sticky , SR). These implementations will use only registers as base
objects.

A 1-trap implementation of (weak-sticky , S') from register for n
processes is presented in Figure 6. This implementation is subtle. It is based on
the observation that if the first R-op operation is blocked, then all other (R-op

FIG. 5. 1-resilient consensus protocol 3 for n processes.
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and L-op) operations can legitimately return L-first. We present below an
informal argument of correctness before giving the formal proof. Consider a
weak-sticky object 2 implemented as in Figure 6. Let H be a history of 2, and let
first-op denote the first operation to complete in H. There are two cases. Case
(1) corresponds to first-op being an L-op operation. Consider the linearization
S, which includes only the complete operations in H and sequences them in the
order of their completion times. Thus, first-op, which is an L-op operation,
becomes the first operation in S. Furthermore, the response of every operation
in S is L-first (since R-first is never returned in the implementation). From the
sequential specification of weak-sticky in Figure 3, it is obvious that S is legal
from the state S' of weak-sticky . Now consider Case (2), which corresponds
to first-op being an R-op operation. The key observation is that if first-op, which
is an R-op operation, completed in H, then by our implementation, there must
be another R-op operation, call it blocked-op, from a different process which is
concurrent with first-op and is blocked. Let us pretend that, although incomplete,
blocked-op has indeed taken effect in H and received the response R-first.
Consider the linearization S which sequences blocked-op first, first-op second,
and the remaining complete operations in H in the order of their completion
times. (blocked-op can be linearized before first-op since these two operations
are concurrent.) Thus, the first operation in the linearization S is an R-op
operation with R-first as the associated response. The second operation in the
linearization is also an R-op operation, and has L-first as the associated
response. The remaining operations in the linearization have L-first as their
response. From the sequential specification of weak-sticky in Figure 3, it is
obvious that S is legal from the state S' of weak-sticky and hence is a
linearization of H with respect to (weak-sticky , S'). Hence the correctness of
our implementation. We formalize these arguments and present a more rigorous
proof of correctness below. The proof is based on a series of claims.

CLAIM 4.3.3.1. The implementation is 1-trap.

PROOF. Clearly, a correct process Pi blocks if and only if the repeat until loop
(Statement 3 of Apply (Pi, R-op, 2)) never terminates. By Statement 2, such a
Pi finishes writing the value 1 into R[i] before blocking.

Suppose that the claim is false: two correct processes Pi and Pj (assume j , i)
block on 2. It follows that R[i] 5 R[ j] 5 1 and each of Pi and Pj is in the repeat
until loop that never terminates. Process Pi eventually reads the value 1 from

FIG. 6. 1-trap implementation of (weak-sticky , S') from register .
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R[ j] and, since j , i, Pi quits the repeat until loop and returns L-first . This
contradicts the assumption that Pi blocks on 2. e

The next claim asserts that if a process Pi successfully completes an R-op
operation on 2, then a different process Pj is already blocked, unable to
complete its R-op operation on 2.

CLAIM 4.3.3.2. Let E be an execution of (P1, P2, . . . , Pn; 2), and H be the
corresponding history. Suppose that H contains the two events—an invocation ei

inv 5
inv(Pi, R-op, 2) and its matching response ei

res 5 resp(Pi, L-first, 2). Then H
contains an invocation ej

inv 5 inv(Pj, R-op, 2) such that

(1) ej
inv ,H ei

res, and
(2) ej

inv has no matching response in H.

PROOF. The proof of this claim is based on the following observations:

O1. The predicate ?k : R[k] 5 1 is stable: that is, if it holds in some state of an
execution, it holds in every subsequent state of that execution. Furthermore,
this predicate must hold before a response can occur to any invocation of
R-op.
The first part of this observation follows from the fact that once a “1” is
written to a register, it is never changed. The second part is obvious from
Statements (1) and (2) of the implementation.

O2. In H, let k be the smallest integer such that Pk has an invocation ek
inv 5

inv(Pk, R-op, 2) and Pk writes a 1 in R[k]. Then ek
inv has no matching

response in H.
To see this, notice that after writing a 1 in R[k], Pk enters the repeat until
loop. This loop never terminates in H because of our premise that k is the
smallest integer such that Pk writes a 1 in R[k]. Thus, Pk does not return
from Apply (Pk, R-op, 2).

O3. In H, if a process Pm writes 1 in R[m] after an invocation em
inv 5 inv(Pm,

R-op, 2), then em
inv ,H ei

res.
Suppose not. Then ei

res ,H em
inv. After the invocation em

inv, when Pm executes
Statement 1 of the procedure Apply (Pm, R-op, 2), the guard @m : R[m]
5 0 evaluates to false (by O1). Thus, Pm returns the response L-first without
writing into R[m]. This contradicts the premise that Pm writes 1 into R[m]
after the invocation em

inv.

To complete the proof of the claim, let S be the set of processes that invoke
R-op on 2 and write 1 into a register in the execution E. Since H contains a
response event ei

res, it follows from O1 that S is nonempty. Let j be the smallest
integer such that Pj [ S. By O2, Pj’s invocation ej

inv of R-op on 2 has no
matching response in H. By O3, ej

inv ,H ei
res. Hence the claim. e

CLAIM 4.3.3.3. Let E be an execution of (P1, . . . , Pn; 2) and H be the history of
2 in E. H is linearizable with respect to (weak-sticky , S').

PROOF. If H has no response events, then the claim is trivial: the empty
sequence is a linearization of H with respect to (weak-sticky , S'). Assume,
therefore, that H has one or more response events. It is obvious from the
implementation that the response of each of these is L-first. Let ei

res 5 resp(Pi,
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L-first, 2) be the first response event in H. Let ei
inv be the invocation whose

matching response is ei
res. There are two cases:

Case 1. ei
inv 5 inv(Pi, L-op, 2). This corresponds to the case in which the first

operation to complete is an L-op operation from process Pi. Define a sequence
S as follows:

(1) S includes all complete operations on 2 in H, and no other operation.
(2) If two operations op and op9 are in S, then op ,S op9 if and only if

response of op precedes the response of op9 in H.

It is easy to verify that S is legal from the state S' of weak-sticky and that
S is a linearization of H with respect to (weak-sticky , S').

Case 2. ei
inv 5 inv(Pi, R-op, 2). This corresponds to the case in which the first

operation to complete is an R-op from process Pi. By Claim 4.3.3.2, there is an
invocation ej

inv 5 inv(Pj, R-op, 2) such that ej
inv ,H ei

res and ej
inv has no

matching response in H. Define a sequence S as follows:

(1) S includes all complete operations on 2 in H, the operation (ej
inv, ej

res),
where ej

res 5 resp(Pj, R-first, 2), and no other operation.
(2) The operation (ej

inv, ej
res) precedes all other operations in S.

(3) If op and op9 are operations in S different from (ej
inv, ej

res), op ,S op9 if and
only if the response of op precedes the response of op9 in H.
It is easy to verify that S is legal from the state S' of weak-sticky and that
S is a linearization of H with respect to (weak-sticky , S').

Hence the claim. e

LEMMA 4.3.3.4. Figure 6 presents a 1-trap implementation of (weak-sticky ,
S') from register for processes P1, P2, . . . , Pn.

PROOF. Follows from Claims 4.3.3.1 and 4.3.3.3. e

LEMMA 4.3.3.5. Figure 7 presents a 0-trap (wait-free) implementation of (weak-
sticky , SR) from register for processes P1, P2, . . . , Pn.

PROOF. Notice that in the implementation, in order to apply L-op on 2, a
process must read register R and, in order to apply R-op on 2, a process must
write register R. Thus, for each operation on 2, there is an associated operation
on register R.

FIG. 7. 0-trap implementation of (weak-sticky , SR) from register .
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Let E be an execution of (P1, P2, . . . , Pn; 2), H be the history of 2 in E, and
H9 be the history of R in E. Let S9 be a linearization of H9 with respect to
(register , 0). We now define a linearization S of H. Informally, S includes all
operations on 2 whose associated operations on R took effect; the operations in
S are sequenced by the order in which their associated operations on R took
effect. Formally, the sequence S is defined as follows:

(1) S includes every complete operation on 2 in H.
(2) If invoke(Pi, op, 2) is an incomplete operation in H whose associated

operation op9 on R is in S9, then S includes a complete operation (in-
voke(Pi, op, 2), respond(Pi, res, 2)), where res is determined as follows. If
op is L-op and op9 returned 0, then res is R-first. If op is L-op and op9
returned 1, then res is L-first. If op is R-op, then res is L-first.

(3) S includes no operation other than the ones mentioned in (1) or (2).
(4) For any two (complete) operations op1 and op2 in S, op1 precedes op2 in S

if and only if op1’s associated operation on R precedes op2’s associated
operation on R in S9.

It is easy to verify that S is a linearization of H with respect to (weak-sticky ,
SR). Thus, the implementation is correct. It is obvious that the implementation is
wait-free or, equivalently, 0-trap. e

LEMMA 4.3.3.6. Figure 8 presents a 0-trap (wait-free) implementation of (weak-
sticky , SL) from register for processes P1, P2, . . . , Pn.

PROOF. Obvious. e

4.3.4. THE LOWER BOUND. The following lower bound is immediate from
Lemmas 4.3.2.2, 4.3.3.4, 4.3.3.5, and 4.3.3.6.

LEMMA 4.3.4.1. Any wait-free implementation of consensus from {weak-
sticky , register } for n processes requires at least n 2 1 objects of type
weak-sticky .

4.4. THE MAIN THEOREM. By Lemma 4.2.1, hm
r (weak-sticky ) 5 ` and

h1
r (weak-sticky ) $ 2. By Lemma 4.3.4.1, h1

r (weak-sticky ) # 2. Thus,
hm

r (weak-sticky ) 5 ` and h1
r (weak-sticky ) 5 2. From this and Proposition

3.3.5, we have:

THEOREM 4.4.1. h1
r is neither robust nor tight.

Intuitively, h1
r is not robust because it places weak-sticky at level 2, below

several other types, as if it were a weak type. But weak-sticky is far from being
weak: it is universal (hm

r (weak-sticky ) 5 `).

4.5. DISCUSSION. In determining the level of a type in h1
r , we are restricted to

use at most one object of that type. It is this limitation that we exploited in

FIG. 8. 0-trap implementation of (weak-sticky , SL).
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proving that h1
r is not robust. In fact, if we are restricted to use at most k objects

(for any integer k), rather than one object, the resulting hierarchy would still be
not robust. The proof again uses weak-sticky and is almost identical to the
proof of non-robustness of h1

r .
The definitions of h1

r and hm
r allow the use of registers in determining the level

of a type. Disallowing the use of registers from h1
r and hm

r result in two new
hierarchies h1 and hm, respectively [Jayanti 1993]. These two hierarchies are also
neither robust nor tight [Jayanti 1993]. Kleinberg and Mullainathan [1993]
independently prove that h1 is not robust. Bazzi et al. [1994] prove that for all
types T, if either T is deterministic or hm(T) $ 2, then hm(T) 5 hm

r (T). Thus,
for a large class of types, the ability of a type to implement consensus is not
enhanced by the availability of registers.

5. Conclusion

We formally defined robustness and other desirable properties of hierarchies of
types. The hierarchy h1

r was proved to be nonrobust. Its nonrobustness is due to
the fact that the level of a type in h1

r is determined by the ability of a single
object of that type. More generally, our results imply that no hierarchy, in which
a type’s level is determined by the ability of a fixed number of objects of that
type, is robust. Thus, our results formally establish that hm

r , the hierarchy in which
the level of a type is based on the ability of an unbounded number of objects of
that type, is the only interesting hierarchy. We leave open the question of
whether hm

r is robust.
Robustness of hm

r plays an important role in analyzing the power of a set of
types. If hm

r is robust, a set of types is universal for n processes if and only if the
set contains a type that is universal for n processes. Thus, the difficult problem of
computing the combined power of a set of types reduces to the simpler problem
of computing the power of the individual types in the set. On the other hand, if
hm

r is not robust, a set of types could be universal for n processes even if no type
in the set is. Thus, it opens up the possibility of implementing a universal type
from a set of nonuniversal types.

Since the time our results were first published [Jayanti 1993], there have been
significant advances on the question of whether hm

r is robust. Borowsky et al.
[1994] and Peterson et al. [1994] prove that, if we only consider deterministic
types, then hm

r is robust. This result is important since most types of interest are
deterministic. Using nondeterministic types and with the assumption that a
process may not bind itself to more than one “port” of an object, Chandra et al.
[1994] prove that hm

r is not robust. Moran and Rappoport [1996] and Lo and
Hadzilacos [1997] strengthen this result in two different ways. Moran and
Rappoport prove the nonrobustness of hm

r without the use of nondeterministic
types, but, as in the work of Chandra et al., they assume that a process may not
bind itself to more than one “port” of an object [Moran and Rappoport 1996]. Lo
and Hadzilacos [1997] prove the nonrobustness of hm

r without making any
assumptions on how processes bind to objects, but their work requires the use of
nondeterministic types. Schenk [1997] proves a result similar to the one in Lo
and Hadzilacos [1997], but his result assumes “infinite” nondeterminism and
applies only for a stronger definition of wait-free implementation. Jayanti [1995]
summarizes many of the results in one unified framework.
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