
On the Use of Registers in

Achieving Wait-Free Consensus

Abstract

Rida A. Bazzi”t Gary L. Peterson~

Gil Neiger* Spelman College

Georgia Institute of Technology

The computational power of concurrent data types has

been the focus of much recent research. Herlihy showed

that such power may be measured by examining the

type’s ability to implement wait-free consensus. Jayanti

argued that this “ability” could be measured in differ-

ent ways, depending, for example, on whether or not

read/write registers could be used in an implementa-

tion. He demonstrated the significance of this distinc-

tion by exhibiting a nondeterministic type whose ability

to implement consensus was increased with the avail-

ability of registers. We show that registers cannot in-
crease the computational power (to implement consen-

sus) of any deterministic type or of any type that can

implement 2-process consensus. These results signifi-

cantly impact upon the study of the wait-free hierar-

chies of concurrent data types. In particular, the com-

bination of these results with other recent works shows

that Jayanti’s hm hierarchy is robust for deterministic

types.

*This author was supported in part by the National Science

Foundation under grants CCR-9106627 and CCR-9301454. Au-

thor’s address: College of Computing, Georgia Institute of Tech-

nology, Atlanta, Georgia 30332-0280.
f T& author was supported in part by a scholarship from the

Hariri Foundation.
t ‘ThIs author was supported in part by the W. F. Kellogg Foun-

dation under a grant to the Center for Scientific Applications of

Mathematics at Spelman College. Author’s address: Computer

and Information Science Program, Spelman College, 35o Spelman
Lane SW, Post Office Box 333, Atlanta Georgia 30314-0339.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
PODC 94- 8/94 Los Angeles CA USA
@ 1994 ACM 0-89791 -654-9/94/0008.$3.50

1 Introduction

Achieving consensus in the presence of processor failures

is of fundamental importance in distributed comput-

ing. A large body of research has studied algorithms for

achieving consensus in three domains: (1) synchronous

message-passing systems, (2) asynchronous message-

passing systems, and (3) asynchronous read/write mem-

ory systems. While the first domain has produced a

large number of deterministic algorithms, it has been

shown that such algorithms do not exist in the other

two [4–7,14]. Because of these results, researchers also

consider algorithms for consensus in asynchronous sys-

tems with primitives more powerful than simple reads
and writes [1,2,7,9–12,14,17,19].

Another reason for taldng this approach stems from

the study of wait-free implementations of concurrent

data types. Here, researchers ask questions such as

the following: “is there a wait-free implementation of

type T1 using objects of type T2 ?“ A concurrent im-

plementation of a data type is wait-free if any process

can complete any operation on the type in a finite num-

ber of its own steps, regardless of the behavior of other

processes. Wait-free implementations are desirable in

asynchronous systems because they prevent slow pro-

cesses from slowing down faster ones; in addition, they

tolerate any number of stopping failures. Herlihy [7]

showed a direct connection between a type’s ability to

implement wait-free consensus and its ability to provide

wait-free implementations of other types. In particular,

he showed that consensus is universal: for any n >0,

if type T can implement wait-free consensus in systems

with n processes, then T can provide a wait-free im-

plementation of any type in such systems. In light of

this result, Herlihy evaluated the power of a data type

by assigning it a consensus number; this is the maxi-

mum number of processes for which the type can imple-

ment wait-free consensus. Herlihy thus cast the universe

of concurrent data types into a hierarchy, each level of

which cent ains types with a particular consensus num-

ber.

Jayanti [91 refined this study by asking the following

3.54

question: what does it mean to say that a type can im-

plement wait-free consensus? He argued that an answer

required addressing the following questions:

1. Can more than one object of the type be used in

the implementation?

2. Can read/write registers also be used in the imple-

ment ation?

Because these questions can be answered together in

four different ways, Jayanti identified four possible hier-

archies of types, one of which corresponds to Herlihy’s

assignment of consensus numbers (answering “no” to

question 1 and “yes” to 2). He called these hl, hi, ~m,

and h~. A subscript “l” indicates that only one object

of a type can be used, while a subscript ‘(m” indicates

that many can be used. A superscript “r” indicates that

registers may be used, while its absence indicates that

they may not. Using this notation, Herlihy’s hierarchy

is hi.

Given these four Klerartiles, Jayanti naturally asked

if they were distinct and, if so, which best measured

the computational power of different data types. He

argued that it is desirable for a hierarchy to be robust.

Informally, a hierarchy is robust if no collection of types
at low levels can implement a type at a higher level.

Jayanti showed that none of hl, h;, and hm could be

robust if it were not equal to h:. He then showed that

both h; and h~ were different from h~, proving that

only ha might be robust (hl cannot equal h; if either

h~ or hi does not). Jayanti left the robustness of h~

as an open question.

Recall that Jayanti’s hierarchy h~ was defined by an-

swering “yes” to question 1 above and “no” to ques-

tion 2; it differs from ha on whether or not registers

may be used in implementations of consensus. Jayanti

proved hm # h~ (and hm to not be robust) by exhibit-

ing a type that was at different levels in the two hier-

archies. This type was specified nondeterministically;

that is, there is (at least) one sequence of operations on

the type for which more than one behavior is possible.

This raises an obvious question: can the same result

be shown with a deterministic type? Since most com-

monly used concurrent data types are deterministic, a

positive answer to this question would imply that the

non-robustness of hm would hold even for the class of

deterministic types.

We answer this question in the negative. That is, we

show that the two hierarchies give equal values for any

deterministic type. Thus, the nondeterminism used by

Jayanti is necessary. It is thus possible that h~ is robust

for the class of deterministic types. The above result is

first proven for types that are oblivious; objects of such
types are not aware of the identities of processes access-

ing them. Most research in this area has concentrated

on such t yp es. Our results also hold for types that are

not oblivious; such types are aware of (and may use)

the identities of processes accessing them.

We also demonstrate other results relevant to the use

of registers in implementing wait-free consensus. For all

types (even nondeterministic ones), the two hierarchies

can differ only at the first level: if either assigns a type a

value great er than 1, then the other assigns it the same

value.

These results confirm that, in most cases, registers do

not play a special role in achieving wait-free consensus.

In another paper [17], we show (as a corollary) that

Jayanti’s hierarchy ha is robust for deterministic types.
Combined with the results of thk paper, we conclude

that hm is robust for these types.

Our results are proven through the introduction of

a new concurrent data type called the one-use bit. An

object of this type is a bit, initially O, that can be read at

most once and set to 1 at most once. Our main results

stem from the following:

1. A finite number of one-use bits can implement a

read/write register in a wait-free implementation

of consensus (this is shown in Section 4).

2. Almost any type can be used to implement a one-

use bit (thk is shown in Section 5).

These results show that almost any type can be used to

implement one-use bits. Thus, the availability of regis-

ters does not increase the ability of such a type to do

consensus (if one is allowed multiple objects of the type).

The existence of types that cannot implement one-use

bits do not invalidate the results mentioned above be-

cause, as will be seen, they are too weak to implement

2-process consensus with or without registers.

2 Background

This section presents the definitions and background

material necessary to present and interpret the results

of this paper.

2.1 Types

A type is a 5-tuple T = (n, Q, I, R, b). The components

are (1) n, the number of “port s“ the type has (this lim-

its the number of processes that may access the type),

(2) Q, a (possibly infinite) set of states; (3) 1, a set

of access invocations; (4) R, a set of access responses;

and (5) 6, a transition function. T may be either cZe-

terministic, in which case 6: Q x N. x I + Q x R, or

nondeterministic, in which case 6: Q x Nn x I + 2Q x ‘.l

Thk specification of a type indicates how processes may

access an object of type T (using invocations in I), how

the object communicates to processes (using responses
in R), and what are the legal sequential histories of the

lIvn={l,2,n}.

355

type (specified by d). If an object of type T is in state q

when invocation i E I appears on port j c Nn, then

the object changes to state q’ and returns response r

over port j if and only if (q’, r) = d(g, j, i) (if T is deter-

ministic) or (q’, T) c ~(q, j, i) (if T is nondeterministic).

A type is oblivious if, for all q c Q, jl, jz c Nn, and

i e 1, d(q, jl, i) = 6(q, jz, i). An oblivious type does not

distinguish identical accesses by different processes. For

oblivious types, we often abuse notation and omit the

second (port number) input to the transition function.

A sequential history of T from a state q. is a

sequence of alternating states and port-invocation-

response triples (starting with qo) such that certain con-

ditions are met. In particular, consider the sequence

~=qO; (i)il, ~l); a;(j2, i27r2); ff2; ””-

(for all k, qk C Q, ik C N~, ik G 1, and Tk E l?). It
must be the case that, for all k, (qk, ?’k) = d(qk,jk,ik)
(if T is deterministic) and (qk, ?’k) E d(qk, ~k,ik) (if T

is nondeterministic). We say that state q’ is reachable

from q if q’ appears in some serial history from q. If H

ends after k port-invocation-response triples, then the

length of H, denoted 1111,is k.

An instantiation or object of type T in a system must

specify, for each port, which process (if any) accesses

the object through that port. At most one process may

use a port. If T is oblivious and there are at most n

processes in the system, then the assignment of “port

numb ers” is irrelevant.

The ability of a type to solve consensus is central

to this paper, We define consensus as a type and

then consider the ability of different types to imple-

ment an object of the consensus type. The n-process

binary consensus type Tc,n is an oblivious type defined

to be (n, Q, I,.R,6), where Q = {1,0, 1}, 1 = {O, 1},

R = {O, 1},and

C$(l,o) = (0,0)
6(1,1) = (1,1)

d(a, b) = (a, a) for any a, b C {O, 1}

Usually, objects of the type are chosen to have state 1

initially. If a process’s initial value is O (or 1, respec-

tively), it performs invocation O (or 1, respectively).

Note that the first invocation on the object determines

all future responses. This response is sometimes called
the consensus value of the object.

2.2 Implementations

This section defines what it means for one type to be

implemented by others. Informally, an implementation

is a set of objects (appropriate ely initialized) and deter-

ministic programs that operate on these objects. There

is one program for each process and for each invocation

for the type being implemented. More formally, let T =

(n, Q, I,R,6) and let S = {01,02,...,0m~ be a set of
objects such that Oj is of type Tj = (nj, Qj, Ij, Rj, ~j).

An implementation of T in state q G Q from S for
. . .

n processes w a tuple of nntml states (ql, qz, . . . >flm)
(% ~ Qj) anda deterministicprogramPjk for ea~
ij c I and each k c N.. The implementation should

specify, for each object Oj, the port number of each

process in the system that accesses Oj; at most mj

processes can do so. Each program of the implemen-

tation specifies how the implementing objects are to be

accessed and what response should be returned to the

invocation associated with that program.

An implementation is correct if all resulting histories

are linearizable with respect to the specification of T

starting from state q [8]. 2 It is wait-free if, in all fair

histories, all invocations of the deterministic programs

terminate in a finite number of steps.3 (For further

details of these definitions, consult Herlihy [7] or Jayanti

[9].) We say that there is an implementation of T from

S for n processes if such an implementation exists for

all q c Q.

If there is an implementation of TC,n from S, we say

that S implements n-process consensus.

2.3 The Universality of Consensus and

Wait-Free Hierarchies

Herlihy [7] demonstrated that the consensus types TC,n

are universal in the following sense. There is a wait-free

implementation of any type T using registers and ob-

jects of type TC,n for systems of n processes. Because of

thk, Herlihy proposed evaluating different types by as-

signing them consensus numbers. The consensus num-

ber of type T is the largest number n for which some

number of registers and a single object of type T can

implement TC,n.

Jayanti [9] questioned two of Herlihy’s assumptions

in assigning consensus numbers: whether or not regis-

ters should be used in the implementations of TC,n and

whether or not multiple objects of a type can be used.

To explore the impact of different choices here, he de-

fined four wait-j%ee hierarchies:

●

●

●

hl (T) > n if one object of type T can implement

n-process consensus.

h: (T) > n if some number of registers and one ob-

ject oft ype T can implement n-process consensus.

h~ (T) z n if some number of objects of type T can

implement n-process consensus.

2A recent paper considers an alternative to linearizability that

is appropriate for certain aspects of the study of asynchronous

computability [15].
3A ~l~torY is & if each process either halts explicitly or Per-

forms an infinite number of operations.

356

● hi(T) > n if some number of registers and objects

of type T can implement n-process consensus.

Herlihy’s assignment of consensus number corresponds

to Jayanti’s hierarchy h;. It is clear from these def-

initions that, for all types T, 1 < hl (T) < h; (T) <

h~(T) and 1 s hl (T) < hm (T) < h~ (T). In addi-

tion, standard techniques can be used to show that, if

T = (n, Q, 1, R, 6), then h(T) < n (where h. is any of

the hierarchies given above).

Ideally, the assignment of a consensus (or hierarchy)

number to a type should be a good measure of the type’s

computational power. The larger the number assigned,

the more power the type has to implement other types.

Indeed, Herlihy’s result on the universality of consen-

sus shows that, if h(T) = n > h(T’) (where h is any

of the hierarchies given above) and T’ has at most n

ports, then there is an implementation of T’ using some

number of regist ers and objects of type T.

Given four different ways of assigning these values, it

makes sense to consider which is best. Jayanti identified

a desirable property of hierarchies that he called robust-

ness. Hierarchy h is robust if, for every choice of n, T,

and S= {T1, T2, ..., Tin}, the relations h(T) > n and

h(ff”) < n (for 1< j < m) imply that there is no imple-
ment at ion of T using objects of types in S. Robustness

implies that there is no way to combine “weak” types

of implement a “strong” type.

Jayanti showed that none of hl, h:, and hm could be

robust if it were not equal to h&. He then showed that

both h; and hm were different from ha, proving that

only h& might be robust (hl cannot equal h: if either

hm or hi does not). Jayanti left the robustness of h:

as an open question.

Jayanti’s proof that hm # h~ was based on the ex-

istence of a type T with hm (T) = 1 and ha(T) ~ 2.

This type is nondeterministic. The remainder of this

paper considers restricted classes of types for which hm

is shown equal to h~. For these classes, hm is robust if

and only if h& is.

3 One-Use Bits

The main results of this paper stem from the imple-

mentation and use of a new concurrent date type called

the one-use bit. Objects of this type are one-bit regis-

ters that can be read only once and written only once.

Section 4 shows that objects of this type can be used

to implement general multi-reader, multi-writer, multi-

value registers, while Section 5 shows that it is easy to

implement this type.

The one-use bit type Tlu = (2, Q1., 11., RI., all.) is

defined as follows:

Ql~ = {UNSET, SET, DEAD}

Il. = {read, write}

RI. = {0,1, ok}

&u(uNSET, read) = {(DEAD, O)}

C$IU(SET, read) = {(DEAD, 1)}

61U (DEAD, read) = {(DEAD, O), (DEAD, 1)}

&u(uNSET, write) = {(SET, ok)}

C!IU(SET, write) = {(DEAD, ok)}

JIU(DEAD, write) = {(DEAD, ok)}.

Only read operations return informational responses;

any such operation sends the object to the state DEAD.

The object can never leave this state and, because of

the nondeterminism, no further information about the

bit can be obtained at this point. After two write op-

erations, the object also goes to the state DEAD.

Note that, although the specification of this type is

nondeterministic, this nondeterminism will play no role

in our use of the type (Section 4); a read will never be

invoked when the object is in state DEAD. Note also

that, as specified, this type is oblivious. In all our uses

of the type, only one process performs write and only

one performs read. Thus, the object could have been

specified as a 2-port, non-oblivious type without loss of

applicability.

4 Using One-Use Bits

Although one-use bits are apparently weaker than gen-

eral multi-use multi-value registers, we can show that,

within the context of wait-free implementations of con-

sensus, they are equally powerful. This can be shown

through three observations:

1. General read/write registers can be simulated using

single-reader single-writ er multi-use bits.

2. For any n, any wait-free implement at ion of n-

process consensus, and any single-reader single-

writer bit b, there are bounds rb and ‘Wbsuch that b

is read and written no more than rb and wb times,

respectively, in any execution of the implement a-

tion.

3. If there are bounds on the number of times that a

multi-use bit b can be read and writ t en, then b can

be simulated by a finite number of single-use bits.

These facts are shown in Sections 4.1–4.3 below.

4.1 Simulating General Read/Write Registers

A large body of literature has considered the definition

and implementation of a variety of different kinds of

read/write registers and the relationships between these

357

kinds. The registers required by Herlihy [7] and Jayanti

[9] are atomic, multi-reader, multi-writer, and multi-

value. Researchers have also considered registers that

are regular (weaker than atomic), single-reader, single-

writ er, and one-bit. The following paragraph gives a

very incomplete account of the large volume of results

that that have been produced, mentioning only those

that are necessary for the results of this paper.

Lamport [13] showed that there is a wait-free im-

plementation of multi-reader, single-writer, regular bits

from single-reader, single-writer, regular bits. Burns

and Peterson [3] showed that there is a wait-free im-

plementation of multi-reader, single-writer, atomic bits

from multi-reader, single-writer, regular bits. Peter-

son [16] showed that there is a wait-free implementation

of mult i-reader, single-writer, at omit, multi-value regis-

ters from multi-reader, single-writer, atomic bits. Pe-

terson and Burns [18] showed that there is a wait-free

implement at ion of multi-reader, multi-writer, at omit,

multi-value registers from multi-reader, single-writer,

atomic, multi-value registers. Since atomic registers are

stronger than regular registers, it follows from all these

results that there is a wait-free implementation of multi-

reader, multi-writer, atomic, multi-value registers from

single-reader, single-writer, atomic bits. (All the im-

plementations mentioned above exist for any number of

processes.)

4.2 Access Bounds in Wait-Free Consensus

Consider some deterministic type T such that h~(T) z

n. This means that there is a wait-free implementation

of TC,~ in a system with n processes that uses some
number of registers and objects of type T. As noted in

the previous section, we can assume that these registers

are single-reader single-writer bits. We show that, for

each bit b, there exist constants ?’b and wb such that in

no execution of the implementation is the bit read more

than I’b times or written more than wb times.

We can consider the executions of the implementa-

tion (from state 1) as a collection of trees. Each node

of a tree corresponds to some configuration of the im-

plementing objects (the bits and the objects of type T)

and the “program counters” of the n processes in their

implementing functions. The roots of the trees corre-

spond to possible initial configurations: the initial states
of the implementing objects and the vector of invoca-
tions that the n processes will use to first access the
Tc,n object (each may be O or 1); that is, each process
is at the “entry point” of one of its two implementing

functions. (Notice that two root configurations can dif-

fer only with respect to the “entry points” selected by

the processes; the implementing objects have the same

states in all such configurations, as the implementation

must specify a unique initial state for each object.) A

configuration Cl is the parent of C’2 if C’2 results from

Cl through the execution of one low-level operation by

one process in itsfirstinvocation on Tc,~. (If a config-

uration can be reached via multiple paths, it appears

multiple times.) Any configuration in which some pro-

cess accesses the Tc,n object a second time does not
appear in a tree. Thus, a configuration in whk.h all n

processes have completed their first invocations is a leaf

node.

We consider only first invocations because any later

invocations by a process must return the same response

as first (see Section 2.1). Thus, the process can store

the first response locally and need not access any of the

implementing objects after its first invocation on the

T.,n object.

Consider any one of these trees. We will show by
cent radiction that it is finite. Assume that it is not.

This means that a form of K6nig’s Lemma applies:

Lemma 1 (Kiinig): If an infinite rooted tree has a

bound on the fan-out of its nodes, then there is an infi-

nite path from the root.

The fan-out of our trees is bounded by n. Any node

has at most n children, one for each process. This is

because, as noted above, the processes are deterministic,

as are registers and the type T.

Konig’s Lemma now implies that there is an infinite

path from the root. This path corresponds to some

execution of the implementation. This means that there

is an execution in which some process never completes

its first invocation on Tc,n. This contradicts the fact

that the implementation is wait-free.

The tree described is thus finite; let d be its depth,

the maximum length of a path from the root. Consider

now all the trees defined above. There are 2“ such trees.

This is because the initial states of the implementing

objects are the same in all trees, and only the choice of

the entry points of the n processes can vary. Let D be

the maximum d over all the trees. This means that, in

each execution in which each process accesses the Tc,n

object at most once, at most D steps are executed. By

the argument given above, thh means that at most D

accesses are invoked on any implementing object in any

execution of the implementation. This means that, by

choosing rb = U)b = D, we know that, in no execution

of the implementation, does any process read bit b more

than Tb tim(% or Write it Wore than wb times.

4.3 Implementing Multi-Use Bits

This section shows how any single-reader, single-writer

bit that is accessed a bounded number of times can be

implemented with a finite number of one-use bits. Sup-

pose that bit b is initialized to v, is read at most rb

times, and is written at most wb times. Because b is

written by only one process, we assume that it is only

written when its value is being changed.

358

The implementation uses ~b(7Ub + 1) one-use bits.

These form an (w~ + 1) x rb array

bits[l . ..wb+l. l... rb],

all elements of which are initially O. Each row corre-

sponds to a write and each column to a read. (This

means that the last row is not actually necessary. It is

included here to simplify the presentation of the read

routine.) The reader maintains two local integer vari-

ables ir and jr, while the writer maintains local iW and

jW; these are all initially 1. A write is performed by flip-

ping all the bits in the row corresponding to the write:

for jW := 1 to ?’b do

bits[iw, jw] := 1

iW:=iW+l

return(ok)

A read is performed by looking for a row that contains

an unflipped bit:

while bits [i., jr] = 1 do

ir :=ir+l

jr:=j. +l

return((w + (i. – 1)) mod 2)

Each read examines a different column to ensure that no

one-use bit is read more than once. After an execution

of a read, iv contains the index of the first row that

has not been completely flipped. This means that bit b

has been written ir – 1 times, so the returned value is

(v+ (ir - 1)) mod 2 (recall that v is b’s initial value).

A formal proof of the correctness of this implementa-

tion is deferred to the full paper.

5 Implementing One-Use Bits

This section illustrates two cases in which one-use bits

can be implemented. These are non-trivial det ermin-

istic types and types above level 1 in hierarchy hm.

Section 5.1 first shows how non-trivial oblivious deter-

ministic types can implement one-use bits. Section 5.2

extends this to the general case of any type. Section 5.3

shows how higher-level types in hm can implement one-

use bits.

5.1 Non-Trivial Oblivious Deterministic Types

Most, but not all, deterministic oblivious types can

implement one-use bits. Some types, however, are so

weak as to be triviaJ and are incapable of implement-

ing any interesting type. Consider, for example, a type
T = (n, Q, 1, R, 6) such that IRI = 1. Because the

type must return the same response to every invocation,

there is no way that it can supply any useful informa-

tion. Formally, an oblivious type 2’ = (n, Q, 1, R, 6) is

trivial if, for every state q E Q and every invocation

i E I, there is a response rqi E R and state q’ such that

d(q, i) = (q’, rq~) and, for every state p reachable from q,
there is a state p’ such that c$(p,i) = (p’, rqi). A trivial

type, once initialized, returns the same response to each

occurrence of a given invocation; processes can gain no

information by accessing an object of the type. A type

that is not trivial is non-trivial. We now show that any

non-trivial oblivious deterministic type can implement

a one-use bit.

Let T = (n, Q, 1, R, d) be a non-trivial oblivious de-

terministic type. This means that there are states

q,p, q’, p’ E Q, invocationi GI, andresponsesrq,rp G
R such that p is reachable from q, d(q, i) = (q’, rq),

d(p, i) = (P’, rp), and rp # rq. It k not hard to see that
p and q can be chosen such that p is reachable from q

in one step, that is, so that there is some invocation i’

and response r’ such that d(q, i’) = (p, r’).

We can now give an implementation of a one-use bit.

We use one object O of type T, initialized to state q. A

read of the bit is performed as follows:

invoke i on O

if response is rq then

/* O is still in state q*/

return(0)

else

/“O was in state p *J

ret urn(1)

A write is performed as follows:

invoke i’ on O

return(ok)

Intuitively, state q corresponds to UNSET, p to SET, and

any other state to DEAD. It is not hard to see that

the above procedures correctly implement a one-use bit

(note that, after the first read, any value can be properly

returned by subsequent reads).

5.2 Non-Trivial Deterministic Types in

General

The previous section showed that any non-trivial oblivi-

ous deterministic type can implement one-use bits. The

proof given there depended on the obliviousness of the

type being used. This section generalizes that result for

types that are not necessarily oblivious.

A type is trivial if, for all start states and all ports,

all sequences of invocations on that port always return

the same sequence of results regardless of any invoca-

tions performed (and the order in which they are per-
formed) on other ports. Thus, for any non-trivial type

T = (n, Q, 1, R, d), there is at least one start state q, a

sequence of invocations on one port (without loss of gen-

erality port 1), and two sequential histories 171 and Hz

from q that contain the same sequence of invocations on

359

port 1 such that one of the invocations in the sequence

returns dfierent values in the two schedules. Call HI

and Hz a non-trivial pair. Without 10SSof generality,

we assume that the invocation returning ditTerent values

is the last invocation on port 1. Let ~ = (il, iz,... , ik)

be the sequence of invocations on port 1 in the two his-

tories. Note that different sequences of operations may

be invoked cm ports other than port 1 in HI and Hz.

Consider any sequential history H from q in whkh

the invocations on port 1 are i’. The history’s mtum

vcdue is the resdt returned by ih.

For the remainder of this section, we will assume that

Hl, Hz, and g are such that IH1 I + [H21 is miniiai

among the non-triviai pairs. The following sequence of

iemmas demonstrate certain properties of H1 and Hz.

These properties allow T to be used to implement one-

use bits.

Lemma 2: (he of HI and Hz has length k; that is, it
consists only of invocations on port 1.

Proof : Let H be the history fkom q consisting oniy

of the invocations in 3 on port 1. Because the return

vaiues of H1 and Hz difIer, the return vaiue of H must

differ from at least one of them, say H2 ‘s. In this case,

H and Hz are also a non-triviai pair. Since IHI I +]Hz I

is rninimai, IH] + IH2 I = k+ IHzI ~ IHII + IH21, SO

IHI [~ k. Since HI must contain the k operations on

port 1, IE71I = k. c1

From now on assume that H1 contains only the k

invocations on port 1 and that H2 contains at least one

invocation on another port (the latter because otherwise

H2 = .HI and they have the same return vaiue).

Lemma 3: The last k invocations in Hz are all on

port 1.

Proof: Let m = IH2 I (m > k) and assume that one

of the last k invocations in Hz in on some port other

than port 1. The last invocation in Hz must be ik on

port 1; otherwise, this invocation can eliminated, re-

suiting in a shorter H;, with H1 and H; being a shorter

non-trivial pair. Suppose that the last j invocations in

Hz are on port 1 (k > j > 1) and that the (m – j)th

is on some other port} say 2. Detine a sequence of his-

tories, H~, H~,... ,H~ as foliows: ~ = Hz, and W2+1

resuits from inverting the order of (m - (j - i))th and
(m – (~ – i) + l)st operations in Hi. That is, each his-
tory successively moves the operation on port 2 (which

is (m — j)th in @) one step later.

Let 4 ~ O be least such that Ht and H1+l have ciMer-

ent return values (if no such 4 exists, then Hi has an in-

vocation on port 2 as its last and forms a non-triviai pair

with HI, contradicting the above observation that both

histories must end with invocations on port 1). Let q’ be

the state of the object after the fist m- j– 1 invocations

of H2(notethat m-j-l> k-j-l =(k-l)-j 20),

Let H{ and Hj be the last j + 1 operations of Ht and

Ht+l, Then Hi and Hj have different return values

from q’ and thus form a non-trivial pair. Note that

lH~l+[H~]=2(j+l)~2k =k+k<lHll+[H21. This

contradicts the minimality of H1 and Hz. We conclude

that the last k invocations in Hz are on port 1. •1

Lemma 4: The length of H2 is k +1; that is, H2 con-

sists of one invocation (say iW) on some port (say 2)

followed by k invocations on port 1.

Proof : Assume that IH21 = m > k + 1. Let H be a

history from q consisting of the iirst m – (k+l)>l

invocations of H2 (none on port 1) followed by the last

k invocations (all on port 1); [Hl = m – 1. If the return

value of H is the same as that of H2, then H1 and H are

a shorter non-triviai pair, giving a contradiction. Thus,

the return value of H is dit&ent tlom that of H2. Let

q’ be the state of the object after the tirst m – (k+ 1)

invocations of Hz. Let Hi and Hi be histories from q’

containing the last k and last k + 1 invocations in H1

and H2, respectively. The return vaiue of H; is the same

as that of H1 and the return value of Hi is the same as

that of Hz. These differ, so Hi, and Hi are a non-triviai

pair. But lHjl+lH~l = k+(k+l) < k+m = IHII+IHz.1,

again contradicting minimality. Thus, IH21 = k +1. ❑

Lemma 4 establishes that an object O of any non-

trivial deterministic type can be used by two processes

to simuiate a one-use bit. (Recall that, in Section 4,

oniy two processes ever access such a bit in my of our

uses of the type, one writing and one reading.) The

reading process is connected to port 1 and performs a

read as follows:

invoke 2 on O

if return value is that of H1 then

/“ writer has not written*/

return(0)

else

/* writer has written*/

return(1)

The writing process is connected to port 2 and simply

performs the one invocation iW from H2 on that port:

invoke iW on O

return(ok)

Note that the reader may get a return value that is

neither H1’s nor H2’s. However, this still indicates that

the writer has written, so 1 can be returned.

5.S High-Level Types in &

Let T be any type such that &(T) >2. This means

that there is an implementation of 2-process consensus

360

using only objects of type T (without registers). We

now show that, even if T is nondeterministic, T can

implement one-use bits.

Let O bean object of type TC,2, initialized to state 1,

as implemented by objects of type T. A read of a one-

use bit is performed as follows:

invoke O on O

let r be response

return(r)

A write is performed as follows:

invoke 1 on O

return(ok)

Basically, the reader proposes O, meaning “read pre-

cedes write,” while the writer proposes 1, meaning

“write precedes read.” If the consensus value is O, then

the write could not have completely preceded the read,

so the read can be linearized b efore the write and return

O. If the consensus value is 1, then the read could not

have completely preceded the write, so the read can be

linearized after the write and return 1. (Note that this

implementation returns the same response to all reads

by the reader; this is permitted by the nondeterministic

specification of one-use bits.)

6 Applications to Wait-FYee Hierarchies

The above results have two important applications to

wait-free hierarchies, given below in Theorem 5.

Theorem 5: Suppose that one of the following holds of

type T:

● T is deterministic;

● hm(T) ~ 2.

Then h~(T) = h~(T).

Proof: Let T be a type with one of the above proper-
ties. Recall that 1 s h~ (T) ~ h; (T) for all types T. It

thus suffices to show that h; (2’) s hm (T). The proof

is divided into three cases:

● T is deterministic and trivial. This means that, no

matter how an object of type T is initialized, any

sequence of invocations by a process always returns

the same sequence of responses. The object can

thus be trivially implemented locally. This means

that, if h~ (T) ~ n, then registers alone can imple-

ment n-process consensus. Since registers cannot

implement 2-pro cess consensus [4,7,14], this implies

that h~(Z’) = 1. Since hm(T) z 1, h&(T) ~ hm(T)

as desired.

●

●

T is deterministic and non-trivial. If h&(T) > n,

then objects of type T and registers can imple-

ment n-process consensus. As noted in Section 4.1,

the registers can be single-reader, single-writer bits.

Section 4.2 showed that there is bound on the num-

ber of times each bit may be used and Section 4.3

showed that, if this is the case, each such bit maybe

simulated by a finite number of one-use bits. Sec-

tion 5.2 showed that objects of any non-trivial de-

terministic type can imp~ment one-use bits. Thus,

objects of type T can implement n-process con-

sensus without using registers. This implies that

hm(T) z n and, therefore, lz~ (T) ~ hm(T) as de-

sired.

hm(T) ~ 2. As noted above, if h~(T) ~ n, then

objects of type T and one-use bits can implement

n-process consensus. Section 5.3 showed that ob-

jects of type T can implement one-use bits. Thus,

objects of type T can implement n-process con-

sensus without using registers. This implies that

hm (T) ~ n and, therefore, h~ (T) s hm (T) as de-

sired.

In all cases, h%(T) < hm (T). This implies that

hm(T) = h~(T). ❑

Theorem 5 shows that Jayanti’s choice of a type T to

distinguish h~ and h: was not accidental: it had to a

nondeterministic type with h~ (T) = 1 and h:(T) z 2.

7 Conclusions

The results of this paper show that, for two large classes

of concurrent data types, Jayanti’s wait-free hierarchies

h~ and h; are equal. One of these is the class of deter-

ministic types, which is of considerable int crest.

These results are of more than theoretical curiosities.

They show that, in most cases of interest, registers are

not “special” when it comes to implementing wait-free

consensus. If convenient, they can be used to simplify

the reasoning process: various arguments made with
the assumptions that registers are available (e.g., about

the hierarchy hi) apply when they are not (e.g., to the

hierarchy h~); the converse is also true.

In particular, these facts pertain to Jayanti’s robust-

ness property. Hks proof that hn is not robust does not

apply, for example, to deterministic types. In fact, we

have shown in another paper that h~ is robust for de-

terministic types [17]. The results of this paper show

that hm is also robust for these types.

Acknowledgments

We are grateful to Scott McCrickard for discussing this

work with us.

361

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Yehuda Afek, David S. Greenberg, Michael Mer-

ritt, and Gadi Taubenfeld. Computing with

faulty shared memory. In Proceedings of the

Eleventh ACM Symposium on Principles of Dis-

tributed Computing, pages 47–58. ACM Press, Au-

gust 1992.

Yehuda Afek, Eytan Weisberger, and Hanan Weis-

man. A completeness theorem for a class of

synchronization objects. In Proceedings of the

Twelfth ACM Symposium on Principles of Dis-

tributed Computing, pages 159–1 70. ACM Press,

August 1993.

James E. Burns and Gary L. Peterson. Construct-

ing multi-reader atomic values from non-atomic

values. In Proceedings of the Sizth ACM Sym-

posium on Principles of Distributed Computing,

pages 222-231. ACM Press, August 1987.

Benny Chor, Amos Israeli, and Ming Li. On pro-

cessor coordination using asynchronous hardware.

In Proceedings of the Sixth ACM Symposium on

Principles of Distributed Computing, pages 86-97.

ACM Press, August 1987.

Danny Dolev, Cynthia Dwork, and Larry Stock-

meyer. On the minimal synchronism needed for dis-

tributed consensus. Journal of the ACM, 34(1):77-

97, January 1987.

Michael J. Fischer, Nancy A. Lynch, and

Michael S. Paterson. Impossibility of dktributed

consensus with one faulty process. Journal of the

ACM, 32(2):374–382, April 1985.

Maurice Herlihy. Wait-free synchronization. A CM

Transactions on Programming Languages and Sys-

tems, 13(1):124–149, January 1991.

Maurice P. Herlihy and Jeannette M. Wing. Lin-

earizability: A correctness condition for concurrent

objects. ACM Transactions on Programming Lan-

guages and Systems, 12(3):463-492, July 1990.

Prasad Jayanti. On the robustness of Herlihy’s hi-

erarchy. In Proceedings of the Twelfth ACM Sym-

posium on Principles of Distributed Computing,

pages 145-158. ACM Press, August 1993.

Prasad Jayanti, Tushar Deepak Chandra, and Sam

Toueg. Fault-tolerant wait-free shared objects.

In Proceedings of the Thirty-Third Symposium on

Foundations of Computer Science, pages 157–166.

IEEE Computer Society Press, October 1992.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Prasad Jayanti and Sam Toueg. Some results

on the impossibility, universality, and decidability

of consensus. In A. Segall and S. Zaks, editors,

Proceedings of the Sixth International Workshop

on Distributed Algorithms, number 647 in Lecture

Notes on Computer Science, pages 69–84. Springer-

Verlag, November 1992.

Jon Kleinberg and Sendhil Mullainathan. Resource

bounds and combinations of consensus objects. In

Proceedings of the Twelfth ACM Symposium on

Principles of Distributed Computing, pages 133-

144. ACM Press, August 1993.

Leslie Lamport. On interprocess communica-

tion; part II: Algorithms. Distributed Computing,

1(2):86-101, 1986.

Michael C. Loui and Hosame H. Abu-Amara. Mem-

ory requirements for agreement among unreliable

asynchronous processors. In Franco P. Preparata,

editor, Advances in Computing Research, volume 4,

pages 163-183. JAI Press, 1987.

Gil Neiger. Set-linearizability and obliviousness:

Foundations of the study of asynchronous com-

putability y. In Proceedings of the Thirteenth ACM

Symposium on Principles of Distributed Comput-

ing. ACM Press, August 1994. This volume,

Gary L. Peterson. Concurrent reading while writ-

ing. ACM Transactions on Programming Lan-

guages and Systems, 5(1):46-55, January 1983.

Gary L. Peterson, Rida A. Bazzi, and Gil Neiger. A

gap theorem for consensus types. In Proceedings of

the Thirteenth ACM Symposium on Principles of

Distributed Computing. ACM Press, August 1994.

This volume.

Gary L. Peterson and James E. Burns. Concurrent

reading while writing II: The multi-writer case. In

Proceedings of the Twenty-Eighth Symposium on

Foundations of Computer Science, pages 383-392.

IEEE Computer Society Press, October 1987.

Serge Plotkln. Sticky bits and the universality
of consensus. In Proceedings of the Eighth ACM

Symposium on Principles of Distributed Comput-

ing, pages 159–175. ACM Press, August 1989.

362

