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Group communication services are becoming accepted as effective building blocks for the
construction of fault-tolerant distributed applications. Many specifications for group commu-
nication services have been proposed. However, there is still no agreement about what these
specifications should say, especially in cases where the services are partitionable, i.e., where
communication failures may lead to simultaneous creation of groups with disjoint member-
ships, such that each group is unaware of the existence of any other group. In this paper, we
present a new, succinct specification for a view-oriented partitionable group communication
service. The service associates each message with a particular view of the group membership.
All send and receive events for a message occur within the associated view. The service
provides a total order on the messages within each view, and each processor receives a prefix
of this order. Our specification separates safety requirements from performance and fault-
tolerance requirements. The safety requirements are expressed by an abstract, global state
machine. To present the performance and fault-tolerance requirements, we include failure-
status input actions in the specification; we then give properties saying that consensus on the
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view and timely message delivery are guaranteed in an execution provided that the execution
stabilizes to a situation in which the failure-status stops changing and corresponds to a
consistently partitioned system. Because consensus is not required in every execution, the
specification is not subject to the existing impossibility results for partitionable systems. Our
specification has a simple implementation, based on the membership algorithm of Cristian
and Schmuck. We show the utility of the specification by constructing an ordered-broadcast
application, using an algorithm (based on algorithms of Amir, Dolev, Keidar, and others) that
reconciles information derived from different instantiations of the group. The application
manages the view-change activity to build a shared sequence of messages, i.e., the per-view
total orders of the group service are combined to give a universal total order. We prove the
correctness and analyze the performance and fault-tolerance of the resulting application.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; D.4.5 [Operating Systems]: Reliability—Fault-tolerance; D.2.4 [Software
Engineering]: Software/Program Verification—Correctness proofs

General Terms: Algorithms, Design, Performance, Verification

Additional Key Words and Phrases: Group communication protocols, message-passing proto-
cols, conditional performance analysis, total-order broadcast, composable building blocks,
service specification, ordered broadcast, distributed algorithms

1. INTRODUCTION

1.1 Background

In the development of practical distributed systems, considerable effort is
devoted to making distributed applications robust in the face of typical
processor and communication failures. Constructing such systems is diffi-
cult, however, because of the complexities of the applications and of the
fault-prone distributed settings in which they run. To aid in this construc-
tion, some computing environments include general-purpose building
blocks that provide powerful distributed computation services.

Among the most important examples of building blocks are group com-
munication services. Group communication services enable processes lo-
cated at different nodes of a distributed network to operate collectively as a
group; the processes do this by using a group communication service to
multicast messages to all members of the group. Different group communi-
cation services offer different guarantees about the order and reliability of
message delivery. Examples are found in Isis [Birman and van Renesse
1994], Transis [Dolev and Malki 1996], Totem [Moser et al. 1996], Newtop
[Ezhilchelvan et al. 1995], Relacs [Babaoglu et al. 1995a], Horus [van
Renesse et al. 1996], and Ensemble [van Renesse et al. 1998].

Solutions based on the group communications approach have been devel-
oped for real-world problems. For example, Isis and Isis-based systems are
providing reliable multicast communication for the New York Stock Ex-
change where timely and consistent data must be delivered and filtered at
multiple trading floor locations, for the Swiss Electronic Bourse where the
“trading floor” has been completely replaced a distributed system where the
traders and member banks participate in all activities electronically, and
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for the new generation of the French Air Traffic Control System where
teams of controllers use clusters of workstations running an air-sector
control application that provides high levels of availability and data consis-
tency [Birman 1999].

The basis of a group communication service is a group membership
service. Each process, at each time, has a unique view of the membership of
the group. The view includes a list of the processes that are members of the
group. Views can change from time to time, and may become different at
different processes. Isis introduced the important concept of virtual syn-
chrony [Birman and van Renesse 1994]. This concept has been interpreted
in various ways, but an essential requirement is that processes that
proceed together through two consecutive views deliver the same set of
messages between these views. Additionally, if a particular message is
delivered to several processes, then all have the same view of the member-
ship when the message is delivered. This allows the recipients to take
coordinated action based on the message, the membership set, and the
rules prescribed by the application.

The Isis system was designed for an environment where processors might
fail and messages might be lost, but where the network does not partition,
i.e., it assumes that there are never two disjoint sets of processors, each set
communicating successfully among its members. This assumption might be
reasonable for some local area networks, but it is not valid in wide area
networks. Therefore, the more recent systems mentioned above allow the
possibility that concurrent views of the group might be disjoint.

To be most useful to application programmers, system building blocks
should come equipped with simple and precise specifications of their
guaranteed behavior. These specifications should include not only safety
properties, but also performance and fault-tolerance properties. Such spec-
ifications would allow application programmers to think carefully about the
behavior of systems that use the primitives, without having to understand
how the primitives themselves are implemented. Unfortunately, providing
appropriate specifications for group communication services is not an easy
task. Some of these services are rather complicated, and there is still no
agreement about exactly what the guarantees should be. Different specifi-
cations arise from different implementations of the same service, because of
differences in the safety, performance, or fault-tolerance that are provided.
Moreover, the specifications that most accurately describe particular imple-
mentations may not be the ones that are easiest for application program-
mers to use.

The first major work on the development of specifications for fault-
tolerant group-oriented membership and communication services appears
to be that of Ricciardi [1992], and the research area is still active (e.g., see
Neiger [1996], Chandra et al. [1996], and Cohen [1996]). In particular,
there has been a large amount of work on developing specifications for
partitionable group services. Some specifications deal just with member-
ship and views [Jahanian et al. 1993; Ricciardi et al. 1993], while others
also cover message services (ordering and reliability properties) [Babaoglu
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et al. 1995b; 1995c; 1998; Cristian 1996b; Dolev et al. 1994; Friedman and
van Renesse 1995; Hiltunen and Schlichting 1995; Moser et al. 1994;
Montresor et al. 1999]. The specifications are often complicated; many are
difficult to understand; and in some cases seem to be ambiguous. It is not
clear how to tell whether a specification is sufficient for a given application.
It is not even clear how to tell whether a specification is implementable at
all; impossibility results such as those in Chandra et al. [1996] demonstrate
that this is a significant issue.

1.2 Our Contributions

We present a new, simple formal specification for a partitionable view-
oriented group communication service. To demonstrate the value of our
specification, we use it to construct an algoritm for an ordered-broadcast
application that reconciles information derived from different views. Our
algorithm is based on algorithms of Amir, Dolev, Keidar, Melliar-Smith,
and Moser [Keidar 1994; Keidar and Dolev 1996;1 Amir et al. 1994]. We
prove the correctness and analyze the performance and fault-tolerance of
this algorithm. Our specification has a simple implementation, based on
the membership algorithm of Cristian and Schmuck [1995]. We call our
specification VS, which stands for view-synchrony.2

In VS, the views are presented to each processor3 according to a
consistent total order, though not every processor need see every view that
includes it in its membership. Each message is associated with a particular
view, and all send and receive events for a message occur at processors
when they have the associated view. The service provides a total order on
the messages associated with each view, and each processor receives a
prefix of this total order. There are also some guarantees about stabiliza-
tion of view information and about successful message delivery, under
certain assumptions about the number of failures and about the stabiliza-
tion of failure behavior.

Our specification VS does not describe all the potentially useful proper-
ties of any particular implementation. Rather, it includes only the proper-
ties that are needed for the ordered-broadcast application. However, pre-
liminary results suggest that the same specification is also useful for other
applications.

The style of our specification is different from those of previous specifica-
tions for group communication services, in that we separate safety require-
ments from performance and fault-tolerance requirements. The safety
requirements are formulated in terms of an abstract, global input/output
state machine, using precondition-effect notation. This enables assertional

1See also “Totally Ordered Broadcast in the Face of Network Partitions,” Exploiting Group
Communication for Replication in Partitionable Networks. In Dependable Network Comput-
ing, Ed. D. Avresky, Kluwer Acad., 2000).
2This is not the same as the notion of view-synchrony defined in Babaoglu et al. [1995c].
3We consider “processor groups” in the formal material of this paper rather than “process
groups.” The distinction is unimportant here.
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reasoning about systems that use this service. The performance and
fault-tolerance requirements are expressed as a collection of properties that
must hold in executions of the service. Specifically, we include failure-
status input actions in the specification; we then give properties saying that
consensus on the view and timely message delivery are guaranteed in an
execution provided that it stabilizes to a situation in which the failure-
status stops changing and corresponds to a consistently partitioned system.
This stabilization hypothesis can be seen as an abstract version of the
“timed asynchronous model” of Cristian [1996a]. These conditional perfor-
mance and fault-tolerance properties are expressed in precise natural
language and require operational reasoning.

We consider how our view-synchronous group communication service can
be used in the distributed implementation of a sequentially consistent
memory. It turns out that the problem can be subdivided into two: the
implementation of a totally ordered broadcast communication service using
a view-synchronous group communication service, and the implementation
of sequentially consistent memory using a totally ordered broadcast ser-
vice. The second of these is easy using known techniques,4 so we focus in
this paper on the first problem. A totally ordered broadcast service delivers
messages submitted by its clients, according to a single total ordering of all
the messages; this total order must be consistent with the order in which
the messages are sent by any particular sender. Each client receives a
prefix of the ordering, and there are also some guarantees of successful
delivery, under certain assumptions about the stabilization of failure
behavior. This service is different from a view-synchronous group commu-
nication service in that there is no notion of “view”; the ordering guarantees
apply to all the messages, not just those within individual views.

We begin in Section 3 by giving a simple formal specification for a totally
ordered broadcast service, which we call TO. This specification will be used
later as the correctness definition for an algorithm running over a group
communication service. It also serves as a simple example to illustrate the
style of specification we use throughout the paper: an abstract state
machine for safety properties, plus stabilized properties for performance
and fault-tolerance.

Then, in Section 4, we present our new specification for a partitionable
group communication service, VS. In VS, there is a crisp notion of a local
view, i.e., each processor, at any time, has a current view, and knows the

4Each processor maintains a replica of the underlying memory. A read operation is performed
immediately on the local copy. A requested update is sent to all processors via the totally
ordered broadcast service. Each processor (even the one where the request was submitted)
applies the update when it is delivered by the totally ordered broadcast service; the submitting
processor also determines the return value and returns it to the client. The fact that this
provides a sequentially consistent shared memory is at the heart of the “Replicated State
Machine” approach to distributed system design. It was first described by Lamport [1978]; a
survey of this approach is given by Schneider [1990] (see also the references therein). An
alternative approach is to send all operations (not just updates) through the totally ordered
broadcast service; this approach constructs an atomic shared memory.
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membership of the group in its current view; moreover, any messages sent
by any processor in a view are received (if they are received at all) in the
same view. The VS layer also provides a “safe” indication, once a message
has been delivered to all members of the view.

Anticipating the formal definition of VS in Section 4, we first informally
enumerate the basic safety properties of VS that are provided in several
existing group communication system implementations (our presentation
follows the survey [Vitenberg et al. 1999], which includes comprehensive
references).

(1) Self inclusion: a processor is always a member of its local view (Relacs
[Babaoglu et al. 1995b], Transis [Dolev et al. 1994], Horus [Friedman
and van Renesse 1995], Newtop [Ezhilchelvan et al. 1995]).

(2) Local monotonicity: local views are installed at any processor in the
increasing order of view identifiers. This is satisfied by most group
communication implementations [Dolev et al. 1994; Amir et al. 1995;
Friedman and van Renesse 1995; Babaoglu et al. 1998; Ezhilchelvan et
al. 1995; Malloth and Schiper 1995].

(3) Initial view: all communication events in VS must occur in a view;
however, VS defines a hybrid initial view approach, where some
processors start in a certain globally known default initial view (cf.
Transis [Dolev et al. 1994] and Consul [Mishra et al. 1991]), and where
the rest of the processors have their view undefined (cf. Isis [Birman et
al. 1991] and Ensemble [Hayden and van Renesse 1996]).

(4) Partitionable membership: the processors may partition into several
groups; the notion of a primary group is not imposed by VS, and
processors may continue operating in any view. Partionable member-
ship is supported by Transis [Dolev and Malki 1996], Totem [Amir et al.
1995], Horus [van Renesse et al. 1996], RMP [Whetten et al. 1995],
Newtop [Ezhilchelvan et al. 1995], and Relacs [Babaoglu et al. 1995a].

(5) Message delivery integrity: any receive event has a corresponding send
event. This is a simple property supported by all group communication
services.

(6) At-most-once delivery (no duplication): a specific message is delivered at
most one time at any processor. This is provided by most services, e.g.,
Babaoglu et al. [1995b], Ezhilchelvan et al. [1995], and Amir et al.
[1992].

(7) Sending view delivery: if a message is delivered to a processor in some
view, then this message was sent in the same view. Among the systems
that support this property are Isis [Birman and van Renesse 1994] and
and Totem [Amir et al. 1995]; in Horus this property is user-selectable
[Friedman and van Renesse 1995].
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(8) Safety notification: a safety event for a specific message at a processor
in a given view tells that processor that the message was delivered to
all members of the view. Examples of systems with similar facilities
include Totem [Amir et al. 1995; [Moser et al. 1994], Transis [Amir et
al. 1992], and RMP [Whetten et al. 1995].

Here are the most important differences between our specification VS and
other group communication specifications.

(1) VS does not mention any “transitional views” or “hidden views,” such
as are found in Extended Virtual Synchrony [Moser et al. 1994] or the
specification of [Dolev et al. 1994]. Each processor always has a
well-defined view of the group membership, and all recipients of a
message share the view that the sender had when the message was
sent.

(2) VS does not require that a processor learn of all the views of which it is
a member.

(3) VS does not require any relationship among the membership of concur-
rent views held by different processors. Stronger specifications demand
that these views be either disjoint or identical [Babaoglu et al. 1995c],
or either disjoint or subsets [Babaoglu et al. 1995b].

(4) VS does not require consensus on whether a message is delivered.
Many other specifications for group communication, including Babaoglu
et al. [1995b; 1995c], Dolev et al. [1994], Friedman and van Renesse
[1995], and Moser et al. [1994], insist on delivery at every processor in
the intersection of the current view and a successor view.5 We allow
each member to receive a different subset of the messages associated
with the view; however, each member must receive a prefix of a
common total order of the messages of that view.6

(5) The “safe” indication is separate from the message delivery event. In
Transis, Totem, and Horus [Dolev and Malki 1996; Moser et al. 1996;
van Renesse et al. 1996], delivery can be delayed until the lower layer
at each site has the message (though it might not yet have delivered it).
Thus, in these systems, safe delivery means that every other member is
guaranteed to also provide safe delivery or crash. A simple “coordinated
attack” argument (as in Chapter 5 of Lynch [1996]) shows, that in a

5The property of agreed delivery in the intersection of views has its main use in allowing
applications to reduce the amount of state-exchange messages (see Amir et al. [1997]).
6The prefix total-order property is somewhat stronger than what is commonly provided by
group communication services. However, it was observed in Vitenberg et al. [1999] that our
prefix total-order property, as it is used in the total-order application in this paper, can be
replaced by the weaker property that guarantees that all messages are ordered within each
view, but the delivery may have message “gaps,” as long as the safe notification for a message
holds for the prefix of the messages up to that message. This property is sufficient because our
application updates the stable order only after a message becomes safe.
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partitionable system, this notion of safe delivery is incompatible with
having all recipients in exactly the same view as the sender. In
contrast, our service delivers a message before it is safe and later
provides a notification once delivery has happened at all other group
members.

(6) There are no liveness requirements that apply to all executions. In-
stead, we follow the “timed asynchronous model” of Cristian [1996a]
and make conditional claims for timely delivery only in certain execu-
tions where the processors and links behave well.

(7) VS does not require that every view change have a cause; in contrast,
some specifications require that the removal of a member that was in
the previous view must be due to a failure of that member, or of a link
to it. We allow arbitrary view changes during periods when the under-
lying network is unstable; however, the conditional performance and
fault-tolerance property of VS shows, that once the communication
stabilizes to a consistently partitioned system, process views must
quickly converge to match that partitioning.

The differences represented by points 2 and 6 mean that our VS service is
not subject to the impossibility results that afflict some group communica-
tion specifications [Babaoglu et al. 1995c; Chandra et al. 1996].

Although VS is weaker in several respects than most services considered
in the literature, we demonstrate that it is strong enough to be useful, by
showing, in Section 5, how an interesting and useful algorithm can run on
top of it. This algorithm is based on data replication algorithms developed
by Amir, Dolev, Keidar, Melliar-Smith, and Moser [Keidar 1994; Keidar
and Dolev 1996; Amir et al. 1994]. These previous algorithms implement a
fault-tolerant shared memory by sending modification operations to each
replica through a group communication service based on Extended Virtual
Synchrony, and carrying out a state-exchange protocol when partition
components merge.

We model processor failures by introducing delays (possibly unbounded)
between any two events occurring at a processor, and we assume that
processors preserve local state between the corresponding crashes and
recoveries. Other solutions make different approaches to dealing with
processor failures. In the work of Dolev and Keidar [Keidar 1994; Keidar
and Dolev 1996] the message is written to stable storage before it is
ordered or acknowledged; thus their solution trades latency for fault-
tolerance. The algorithm of Amir et al. [1994] reduces this latency by using
a specialized “safe” message delivery service before the message is written
to stable storage. Friedman and Vaysburg [1997] give an algorithm that
does not use stable storage for messages. This allows for messages to be
delivered to the clients faster; however, the algorithm must assume that
certain failures of a large number of processors do not occur.

Our algorithm, which we call VStoTO, can be seen as a more abstract
form of the previous solutions, separated from the specific use for data
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replication. We present the algorithm using I/O automata [Lynch and
Tuttle 1989; Lynch 1996] in Section 5. The algorithm is formally specified
in great detail; however, our intent is to give an algorithm that admits
many implementations, and we assume the local optimizations would be
largely performed during the mapping of the abstract algorithm to the
target platform (cf. Cheiner and Shvartsman [1999]). Figure 1 depicts the
major components of the system we consider. The TO Service is repre-
sented by the dashed box. The totally ordered broadcast service is struc-
tured in two layers, the top layer consisting of the distributed VStoTO
components, and the bottom layer consisting of the VS Service. The clients
access the totally ordered broadcast service via the VStoTO components.

Finally, in Sections 6 and 7, we give a proof that the VStoTO algorithm,
running on top of VS, indeed provides the service expressed by the TO
specification. The safety aspect of this claim uses assertional methods. We
give invariants on the global state of a system that consists of the VStoTO
algorithm and the VS state machine. We then give a simulation relation-
ship between the global state of the system, and the TO state machine. As
usual, proving the invariants and the simulation relationship involves
reasoning only about individual state transitions; it does not require
operational reasoning, in which one considers a whole execution. Our safety
proofs assume complete asynchrony; we make no assumptions about time
or communication delays. The performance and fault-tolerance aspects of
the proof involve operational reasoning about timed executions.

2. MODELS AND MATHEMATICAL FOUNDATION

We model the distributed-computing setting where finitely many proces-
sors communicate by means of message passing and share no common
storage. The processors have unique identifiers from a totally ordered finite
set P. The processors and communication are asynchronous. By assuming
asynchrony we are able to model arbitrary delays, and we can model
processor crashes and recoveries in terms of appropriate bounded or

Fig. 1. Overview of system structure.
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unbounded delays. We assume that processors do not crash with a loss of
state. Assuming communication asynchrony allows us to specify our ser-
vices and algorithms without regard for communication latency and band-
width. In assessing the conditional performance of our algorithms we
assume, that in the executions where the system stabilizes, the communi-
cation occurs within bounded delays regardless of the number and the size
of the messages (we give precise definitions in Sections 3.2 and 4.2).

We now define our formal notation and model of computation.
If S is a set, the notation S' refers to the set S ø $'%. We assume that

each of the basic sets used in this paper (sets of locations, messages, group
identifiers, etc) does not contain '. Whenever S is ordered, we order S' by
extending the order on S, and making ' less than all elements of S.

If r is a binary relation, then we define dom~r! to be the set (without
repetitions) of first elements of the ordered pairs comprising relation r, and
range~r! to be the set of second elements. If f is a partial function from A
to B and ^a, b& [ A 3 B, then f Q ^a, b& is defined to be the partial
function that is identical to f except that f~a! 5 b.

If f and g are partial functions, from A to B and from A to C respectively,
then the pair ^f, g& is defined to be the function from A to B 3 C such that
^f, g&~a! 5 ^f~a!, g~a!&.

If S is a set, then seqof~S! denotes the set of all finite sequences of
elements of S. We write l for the empty sequence, and ^^a&& for the
sequence consisting of the single element a. If s is a sequence, length~s!
denotes the length of s. If s is a sequence and 1 # i # length~s! then s~i!
denotes the ith element of s. If s and t are sequences and s is finite, then
the concatenation of s and t is denoted by s z t. We say that sequence s is a
prefix of sequence t, written as s # t, provided that there exists s9 such
that s z s9 5 t. A collection S of sequences is consistent provided that for
every s, t [ S, either s # t or t # s. If S is a consistent collection of
sequences, we define lub~S! to be the minimum sequence t such that s # t
for all s [ S.

We often regard a sequence s as a partial function from its index set to
its elements; thus, for example, we use the function notation range~s! to
denote the set of elements appearing in sequence s. If s is a sequence of
elements of X and f is a partial function from X to Y whose domain
includes range~s!, then applyall~ f, s! denotes the sequence t of elements of
Y such that length~t! 5 length~s! and, for i # length~t!, t~i! 5 f~s~i!!.

Our services and algorithms are described using untimed and timed state
machine models. Untimed models are used for the safety properties, while
timed models are used for the performance and fault-tolerance properties.

The untimed model we use is the I/O automaton model of Lynch and
Tuttle [1989], also described in Chapter 8 of Lynch [1996]. We do not use
the “task” construct of the model—the only components we need are a set of
states, a designated subset of start states, a signature specifying input,
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output, and internal actions, and a set of (state,action,state) transitions.
The input and the output actions together constitute the external actions of
an automaton. The timed model we use is that of Lynch and Vaandrager
[1996], as described in Chapter 23 of Lynch [1996]. This is similar to the
untimed model, but also includes time passage actions n~t!, which indicate
the passage of real time t. Time passage actions also have associated state
transitions.

An execution fragment of an I/O automaton is an alternating sequence of
states and actions consistent with the transition relation. An execution is
an execution fragment that begins with a start state. Timed execution
fragments and timed executions of a timed automaton are defined in the
same way. A timed execution fragment of a timed automaton has a “limit
time” ltime [ R$0 ø $`%, which is the sum of all the amounts of time in its
time passage actions.

Since our treatment is compositional, we need notions of external behav-
ior for both types of automata. For I/O automata, we use traces, which are
sequences of external actions; for timed automata, we use timed traces,
each of which is a sequence of actions paired with its time of occurrence,
together with a value ltime [ R$0 ø $`% indicating the total duration of
time over which the events are observed. The external behavior of an I/O
automaton is captured by the set of traces generated by its executions, while
that of a timed automaton is captured by the set of timed traces generated
by its “admissible” timed executions, i.e., those in which ltime 5 `.

Execution fragments can be concatenated, as can timed execution frag-
ments, traces, and timed traces. I/O automata can be composed, as can
timed automata; Chapters 8 and 23 of Lynch [1996] contain theorems
showing that composition respects the external behavior. Invariant asser-
tion and simulation relation methods for these two models are also pre-
sented in those chapters.

Finally, we note that we use I/O automata to express our safety specifi-
cations and to define distributed algorithms. A safety specification is
normally given as a single automaton, while a distributed algorithm is
given as a composition of several automata, each of which models the
behavior of a processor in a distributed setting.

3. TOTALLY ORDERED BROADCAST

In this section, we present TO, our specification for a totally ordered
broadcast communication service. TO is a combination of a state machine
TO-machine and a performance/fault-tolerance property TO-property,
which is a property of timed traces allowed by a timed version of TO-
machine.

Figure 2 depicts the major components of the system we consider to-
gether with the signatures of their interactions.

For the rest of the paper, we fix P to be a totally ordered finite set of
processor identifiers (we will often refer to these as locations), and A to be
a set of data values.
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3.1 The State Machine TO-Machine

The interface between the totally ordered broadcast service and its clients
is through input actions of the form bcast~a!p, representing the submis-
sion of data value a by a client at the location of processor p, and output
actions of the form brcv~a!p, q, representing the delivery to a client at q of
a data value previously sent by a client at p. We call the messages at this
interface “data values,” to distinguish them from messages at lower-level
interfaces.

The state of the specification automaton includes a queue queue of data
values, each paired with the location at which it originated; the order
represented by queue is determined by the service implemented by the
TO-machine. Also, for each location p, there is a queue pending@ p#
containing the data values originating at p that have not yet been added to
queue. Finally, for each p there is an integer next@ p# giving the index in
queue of the next data value to be delivered at p. The formal automaton
definition is given in Figure 3.

The finite traces of this automaton are exactly the finite prefixes of traces
of a totally ordered causal broadcast layer, as defined in Fekete et al.
[1995].

Note, that in any trace of TO-machine, there is a natural correspondence
between brcv events and the bcast events that cause them.

3.2 The Performance and Fault-Tolerance Property TO-Property

Consider a signature TO-fsig that is the same as that of TO-machine,
above, with the addition of the actions shown in Figure 4.

If b is any finite sequence of actions of TO-fsig, then we define the
failure-status of any location or pair of locations after b to be either good,
bad, or ugly, based on the last action for that location or pair of locations
in b. If there is no such action, the default choice is good. We extend this
definition to related types, e.g., where b is a sequence of timed actions.

The intention (though this has no formal meaning at the level of an
abstract specification) is that a good process takes steps with no time delay
after they become enabled, a bad process is stopped, and an ugly process
operates at nondeterministic speed (or may even stop). Similarly, a good

Fig. 2. System components and interfaces.
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channel delivers all messages that are sent while it is good, within a fixed
time of sending. A bad channel delivers no messages. An ugly channel
might or might not deliver its messages, and there are no timing restric-
tions on delivery. But these statements refer to processors, channels, and
their properties, notions that belong in an implementation model, not in an
abstract service specification.

To formulate our performance/fault-tolerance claim, we define TO-property
~b, d, Q!, in Figure 5, as a parameterized property of a timed sequence pair
over external actions of TO-fsig, as defined in Lynch and Vaandrager
[1996]. This is a pair consisting of a sequence b of timed actions (with
nondecreasing times) together with an ltime. Here, we only consider cases
where ltime 5 `. The parameters b and d are nonnegative reals, and the
parameter Q is a set of processors.

Fig. 3. TO-Machine.

Fig. 4. Signature for good, bad, and ugly actions.
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The intended intuitive property that is formalized in TO-property~b, d, Q!
is as follows. Suppose, that starting from a certain time l, processors in Q
and all pairs of processors from Q are good, while all pairs where one
processor is in Q and the other is not in Q are bad. Then, after a
“stabilization interval” of length at most b, the messages sent among the
processors in Q are delivered within time d, and any message delivered to
any processor in Q is also delivered to all other processors in Q within time d.

3.3 The Combined Specification TO

We define the specification TO~b, d, Q! to be the pair consisting of the
specification TO-machine and the property TO-property~b, d, Q!.

We say that a timed automaton A satisfies the specification TO~b, d, Q!
provided that every admissible timed trace of A is in the set (of timed
sequence pairs) defined by TO-property~b, d, Q!.

4. VIEW-SYNCHRONOUS GROUP COMMUNICATION

In this section, we give a formal specification for our view-synchronous
group communication service. This specification is again based on a combi-
nation of a state machine, VS-machine, and a performance/fault-tolerance
property, VS-property.

For the rest of the paper, we fix M to be a message alphabet, and ^G,
,G, g0& to be a totally ordered set of view identifiers with an initial view
identifier g0. We define views 5 G 3 P~P!, the set of pairs consisting of a
view identifier together with a set of locations; an element of the set views
is called a view. If v is a view, we write v.id and v.set to denote the view
identifier and set components of v, respectively. v0 5 ^g0, P0& is a distin-
guished initial view, in which the identifier g0 is the minimal identifier,
and the set is a particular set P0.

Fig. 5. Definition of TO-property.
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4.1 The State Machine VS-Machine

The external actions of VS-machine include actions of the form gpsnd~m!p,
representing the client at p sending a message m, and actions of the form
gprcv~m!p, q, representing the delivery to q of the message m sent by p.
Outputs safe~m!p, q are also provided at q to report that the earlier
message m from p has been delivered to all locations in the current view as
known by q.

VS-machine informs its clients of group status changes through
newview~g, S!p actions (with p [ S being guaranteed by the definition of
the newview signature), which tells p that the view identifier g is
associated with membership set S and that, until another newview
occurs, the following messages will be in this view. After any finite
execution, we define the current view at p to be the argument v in the last
newview event at p, if any; otherwise it is either the initial view g0, P0 if
p [ P0, or ' if p [y P0. This reflects the concept that the system starts
with the processors in P0 forming the group, and other processors unaware
of the group.

The code is given in Figure 6. The state of the automaton is similar to
that of TO-machine, except that there are multiple queues, one per view
identifier, and similarly for each view identifier there is a separate indica-
tor for the next index to be delivered to a given location. Also, the service
keeps track of all the views that have ever been defined, and of the current
view at each location.

The actions for creating a view and for informing a processor of a new
view are straightforward (recall that the signature ensures that only
members, but not necessarily all members, receive notification of a new
view). Within each view, messages are handled as in TO-machine: first
kept pending, then placed into a total order in the appropriate queue, and
finally passed to the environment. Thus, VS-machine ensures that each
gprcvp, q and each safep, q event occurs at q when q ’s view is the same as
p ’s view when the corresponding gpsnd event occurs at p. (This is shown
formally in Lemma 2.) A message that is sent before the sender knows of
any view (when the current view is ') is simply ignored, and never
delivered anywhere. The specification given in Figure 6 (unlike the partic-
ular VStoTO algorithm presented later) does not have any notion of
“primary” view: it does not treat a message associated with a majority view
differently from one in a minority view.

Note that VS-machine does not include any restrictions on when a new
view might be formed. However, our performance and fault-tolerance
property VS-property, described below, does express such restrictions—it
implies that “capricious” view changes must stop shortly after the behavior
of the underlying physical system stabilizes. In any trace of VS-machine,
there is a natural correspondence between gprcv events and the gpsnd
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events that cause them, and between safe events and the gpsnd events
that cause them.

For later use we give some facts about VS-machine. These are expressed
using a derived variable. Derived variables:

created-viewids 5 $g [ G?S : ^g, S& [ created%

LEMMA 4.1 The following are true in all reachable states of VS-machine:
For any p [ P, S # P, m [ M, g [ G:

(1) If g [ created-viewids then there is a unique S such that g, S [

created.

(2) If current-viewid@ p# Þ ' then current-viewid@ p# [ created-viewids.

Fig. 6. VS-machine.
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(3) If current-viewid@ p#, S [ created then p [ S.

(4) If pending@ p, g# Þ l then g [ created-viewids.

(5) If pending@ p, g# Þ l then current-viewid@ p# Þ '.

(6) If pending@ p, g# Þ l then g # current-viewid@ p#.

(7) If queue@g# Þ l then g [ created-viewids.

(8) If m, p is in queue@g# then current-viewid@ p# Þ '.

(9) If m, p is in queue@g# then g # current-viewid@ p#.

(10) next@ p, g# # length~queue@g#!11.

(11) next-safe@ p, g# # length~queue@g#!11.

(12) next-safe@ p, q# # next@ p, g#.

(13) If ^g, S& [ created and next@ p, g# Þ 1 then p [ S.

(14) If ^g, S& [ created and next-safe@ p, g# Þ 1 then p [ S.

PROOF. All are straightforward by induction. e

In Lemma 4.2 we enumerate some important properties of the traces of
VS-machine with the help of a function cause that, for a given trace, maps
gprcv and safe events to gpsnd events. When we say that the mapping is
monotone increasing for gprcvp, q (respectively safep, q) events, we are
saying if event p precedes event p9 in a trace, where p and p9 are gprcvp, q

(respectively safep, q) events for the same p and q and within the same
view, then cause~p! precedes cause~p9! in that trace.

LEMMA 4.2 If b is any trace of VS-machine, then there exists a unique
total function cause mapping gprcv and safe events in b to gpsnd events
in b, such that:

(1) (Message integrity) For each gprcv and safe event p, cause~p! pre-
cedes p, has the same value argument, and has a processor subscript
equal to the first (“source”) subscript of p. Moreover, the current view at
the location of p when p occurs is not ', and is the same as the current
view at the location of cause~p! when cause~p! occurs.

(2) (No duplication) For each q, cause is one-to-one for gprcv events with
second (“destination”) subscript q. Similarly, for each q, cause is
one-to-one for safe events with second (“destination”) subscript q.

(3) (No reordering) For each p and q, and within each view: cause is
monotone increasing for gprcvp, q events, and cause is monotone in-
creasing for safep, q events.

(4) (No losses) For each p and q, and within each view: The range of cause
for gprcvp, q events is a prefix of the subsequence of gpsndp events, and
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the range of cause for safep, q events is a prefix of the subsequence of
gpsndp events.

PROOF. Such a cause mapping can be constructed from any execution a

that gives rise to trace b, by assigning unique identifiers to gpsnd events
and carrying them along in the pending and queue components. Unique-
ness is immediate, since the properties require that the ith gprcvp, q event
within a particular view g must be mapped to the ith gpsndp event within
the same view g, and similarly for safep, q events. e

Lemma 4.2 allows us to implicitly associate a particular gpsnd event
with each gprcv event and each safe event, in any trace of VS-machine.

Remark. As an alternative possibility for specifying view-synchronous
group communication, we might weaken the createview precondition so
that it only enforces unique IDs, and does not enforce in-order creation:

Internal createview v
Precondition:

for all w [ created,
v.id Þ w.id

Effect:
created 4 created ø $v%

We call this alternative specification WeakVS-machine. We do not prove
it here, but it can be shown that WeakVS-machine and VS-machine are
equivalent specifications: they allow exactly the same finite traces. Thus,
the safety property for the VStoTO-system remains valid when using
WeakVS-machine in place of VS-machine.

4.2 The Performance and Fault-Tolerance Property VS-Property

Consider a signature VS-fsig that is the same as that of VS-machine, above,
with the addition of the failure-status actions (as in Figure 4). We define
VS-property as a parameterized property of a timed sequence pair ~b, `!
over external actions of VS-fsig. The parameterized property is defined in
Figure 7. Parameters b and d are nonnegative reals, and Q is a set of
processors. For the clause (d) of VS-property, the correspondence between
the messages and safe events is formally guaranteed by the cause function
whose existence and uniqueness are asserted in Lemma 4.2.

The intended intuitive property that is formalized in VS-property~b, d, Q!
is as follows. Suppose, that starting from a certain time l, processors in Q
and all pairs of processors from Q are good, while all pairs where one
processor is in Q and the other is not in Q are bad. Then, after a
“stabilization interval” of length at most b, (1) all processors in Q are in the
same view and no other processors are in that view, (2) no new views are
reported to processors in Q after that time, and (3) any messages sent
among the processors in Q in that view are safe at all processors in Q
within time d.
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4.3 The Combined Specification VS

We define the specification VS~b, d, Q! to be the pair consisting of the
specification VS-machine and the property VS-property~b, d, Q!.

We say that a timed automaton A satisfies the specification VS~b, d, Q!
provided that every admissible timed trace of A is in the set defined by
VS-property~b, d, Q!.

5. THE ALGORITHM VStoTO

Now we describe the VStoTO algorithm, which uses VS to implement TO.
As depicted in Figure 1, the algorithm consists of an automaton VStoTOp

for each p [ P. Code for VStoTOp appears in Figure 9 (signature and
states) and Figure 10 (transitions), and some auxiliary definitions needed
in the code appear in Figure 8.

For the rest of the paper, we fix a set Q of quorums, each of which is a
subset of P. We assume that every pair Q, Q9 in Q satisfy Q ù Q9 Þ À.
Quorums are used to establish certain views as primary views. The mem-
bership of a primary view must contain a quorum. Note that we “fix” the set
Q for convenience. The quorums in Q need not be necessarily precomputed,
e.g., we can define Q to be the set of majorities.

The activities of the algorithm consist of normal activity and recovery
activity. Normal activity occurs while group views are stable. Recovery
activity begins when a new view is presented by VS, and continues while
the members exchange and combine information from their previous histo-
ries in order to establish a consistent basis for subsequent normal activity.

In the normal case, each value received by VStoTOp from the client is
assigned a systemwide unique label consisting of the viewid at p when the
value arrives, a sequence number, and the processor id p. The variable
current keeps track of the current view, and the variable nextseqno is

Fig. 7. Definition of VS-property.
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used to generate the sequence numbers. Labels are ordered lexicographi-
cally. VStoTOp stores the label, ^ label,value & value pair in a relation
content. It sends the pair to the other members of the current view, using
VS, and these other processors also add the pair to their own content
relations. An invariant shows that each content relation is actually a
partial function from labels to values, and that a given label is associated
with the same data value everywhere.

The algorithm distinguishes primary views, whose membership includes
a quorum of processors, from nonprimary views. When VStoTOp receives a
^ label,value & pair while it is in a primary view, it places the label at the
end of its sequence order. In combination with content, order describes a
total order of submitted data values; this represents a tentative version of
the systemwide total ordering of data values that the TO service is
supposed to provide. The consistent order of message delivery within each
view (guaranteed by VS) ensures order is consistent among members of a
particular view, but it need not always be consistent among processors in
different views. When VStoTOp receives a ^ label,value & pair while it is in
a nonprimary view, it does not process the pair (except for recording it in
content).

VStoTOp remembers which data values have been reported as safely
delivered to all members of the current view, using a set safe-labels of
labels. When a label is in safe-labels, it is a candidate for becoming
“confirmed” for release to the client. Labels in the order sequence become
confirmed in the same order in which they appear in order. The variable
nextconfirm is used to keep track of the prefix of the current order
sequence that is confirmed. VStoTOp can release data values associated
with confirmed labels to the client, in the order described by order. The
variable nextreport is used to keep track of which values have been
released to the client.

Fig. 8. Definitions used in VStoTO automaton.
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Recovery activity begins when VS performs a newview event. This
activity involves exchanging and combining information to integrate the
knowledge of different members of the new view. The recovery process
consists of two, possibly overlapping phases. In the first phase of recovery,
each member of a new view uses VS to send a state-exchange message
containing a summary of that processor’s state, including the values of its
content, order, and nextconfirm variables. In order to use this state
information, each processor must determine which member has the most
up-to-date information. For this purpose, another variable highprimary is
used to record the highest view identifier of a primary view in which an
order was calculated that has affected the processor’s own order sequence.
(This effect can be through the processor’s own earlier participation in that
primary view, or through indirect information in previous state-exchange
messages.) The value of the highprimary variable is also included in the
summary sent in the state-exchange message.

During this first phase of recovery, VStoTOp records the summary
information received from the other members of the new view, in gotstate,
which is a partial function from processor IDs to summaries. Once
VStoTOp has collected all members’ summaries, it processes the informa-
tion in one atomic step; at this point, it is said to establish the new view.
The processor processes state information by first defining its confirmed
labels to be the longest prefix of confirmed labels known in any of the
summaries. Then it determines the representatives, which are the members
whose summaries include the greatest highprimary value. Then the
information is processed in different ways, depending on whether or not the
new view is primary.

If the new view is not primary, the processor adopts as its new order the
order sent by a particular “chosen” representative processor. In this case,
highprimary is set equal to the greatest highprimary in any of the
summaries, i.e., the highprimary of the chosen representative. On the
other hand, if the view is primary, the processor adopts as its new order
the order computed as above for nonprimary views, extended with all other
known labels appearing in any of the summaries in gotstate, arranged in
label order. In this case, highprimary is set equal to the new viewid.

Extracting the various pieces of information described above from
gotstate requires some auxiliary functions, which are defined in Figure 8.
Namely, let Y be a value of the type recorded in the gotstate component.
Then knowncontent~Y ! contains all the (label, value) pairs in the summa-
ries recorded in Y. Also, maxprimary~Y ! is the greatest view identifier of
an established primary appearing in any of the summaries, reps~Y !
denotes the set of members that know of this view, and chosenrep~Y ! is
some consistently chosen element of this set. (Any method can be used to
select the particular representative, as long as all processors select the
same one from identical information; for example, they could choose the
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representative with the highest processor id, or the one whose order
sequence is extreme in some total order on sequences.) Now shortorder is
the order of the chosen representative; this is the order adopted in a
nonprimary view, as described above. And fullorder consists of
shortorder~Y ! followed by the remaining elements of knowncontent~Y !,
in label order; this is the order adopted in a primary view. We also define
maxnextconfirm~Y ! to be the highest among the reported nextconfirm
values in the exchanged state.

At this point, the first phase of recovery is completed, and normal
processing of new client messages is allowed to resume. For a primary
view, the second phase of recovery involves collecting the VS safe indica-
tions for the state-exchange messages. VStoTOp remembers these indica-
tions in a variable safe-exch. This phase may overlap with the summary
collection phase. Once the state-exchange is safe, all labels used in the
exchange are marked as safe, and all associated messages are confirmed
just as they would be in normal processing. For a nonprimary view, in the
second phase of recovery the safe indications are ignored.

The state of VStoTOp also records the status of processing, which may
be normal (anywhere other than in the first phase of recovery), send (in
the first phase of recovery, after the new view announcement but before
sending the state-exchange message), or collect (in the first phase of
recovery, waiting for some state-exchange messages).

6. CORRECTNESS—SAFETY ARGUMENT

Define VStoTO-system to be the composition of VS-machine and VStoTOp

for all p [ P, with the actions used for communication between the two
layers (i.e., the gpsnd, gprcv, safe, and newview actions) hidden. In a

Fig. 9. VStoTOp: Signature and states.
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state of the composition, we refer to the separate state variables by giving a
subscript p indicating a variable that is part of the state of VStoTOp.

The proof is based on a forward simulation relation [Lynch and Vaan-
drager 1995] from VStoTO-system to TO-machine, established with the
help of a series of invariant assertions for VStoTO-system. We add some
derived variables to the state of VStoTO-system, for use in defining the
simulation relation and in stating and proving the invariants:

Fig. 10. VStoTOp: Transitions.
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We write allstate@ p, g# to denote a set of summaries, defined so that x
[ allstate@ p, g# if and only if at least one of the following hold:

(1) current.idp 5 g and x 5 ^contentp, orderp, nextconfirmp,
highprimaryp&.

(2) x [ pending@ p, g#.

(3) ^x, p& [ queue@g#.

(4) For some q, current.idq 5 g and x 5 gotstate~ p!q.

Thus, allstate@ p, g# consists of all the summary information that is in the
state of p if p ’s current view is g, plus all the summary information that
has been sent out by p in state-exchange messages in view g and is now
remembered elsewhere among the state components of VStoTO-system.
Notice that allstate@ p, g# consists only of summaries: an ordinary mes-
sage l, a is never an element of allstate@ p, g#. We write allstate@g# to
denote

øp[P allstate@p, g#,

and allstate to denote

øg[G allstate@g#.

We write allcontent for

øx[allstate x.con.

This represents all the information available anywhere that links a label
with a corresponding data value.

The invariants also require the addition of some history variables to the
state of VStoTO-system: for every p [ P, g [ G, established@ p, g# is
defined to be a Boolean, initially true if g 5 g0 and p [ P0, otherwise
false; this variable is maintained by placing the statement
established@ p, current.id# $ true in the effects part of gprcv~x!q, p,
just after the assignment status $ normal (and within the scope of the
outer if statement).

For every p [ P, g [ G, buildorder@ p, g# is defined to be a sequence of
labels, initially empty; this variable is maintained by following every
statement of processor p that assigns to order with another statement
buildorder@ p, current.idp# 4 order. It follows, that if p establishes a
view with id g and later leaves view g for a view with a higher viewid, then
forever afterward, buildorder@ p, g# remembers the value of orderp at the
point where p left view g.
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6.1 Invariants

We first prove a long series of invariants, establishing simple relationships
among the state variables, and other properties of the reachable states. As
usual, each invariant is proved using induction on the length of an
execution, assuming previous invariants.

The first invariant asserts consistency between certain variables of the
processes and of VS.

LEMMA 6.1 The following are true in all reachable states of
VStoTO-system.

For any p [ P:

(1) currentp 5 ' if and only if current-viewid@ p# 5 '.

(2) If currentp Þ ' then current.idp 5 current-viewid@ p#.

(3) If currentp Þ ' then currentp [ created.

PROOF. Easy induction. e

The next invariant expresses that no state-exchange happens until a
node learns of a view.

LEMMA 6.2 The following is true in all reachable states of
VStoTO-system. If currentp 5 ' then statusp 5 normal.

PROOF. The only action in which statusp can change from normal is
newview~v!p, which changes currentp. e

The next invariant characterizes the labels that occur in various state
components.

LEMMA 6.3 The following are true in all reachable states of
VStoTO-system.

(1) If ^g9, p, p9& is in bufferp then currentp Þ ' and p 5 p9 and g9 5
current.idp.

(2) If ^^g9, p, p9&, p& is in pending@ p, g# then currentp Þ ' and p 5 p9
and g 5 g9.

(3) If ^^^g9, p, p9&, p&, p& is in queue@g# then currentp Þ ' and p 5 p9
and g 5 g9.

PROOF. Each part is an immediate induction on the execution, using the
previous part. e

The next two invariants justify the way the definition of the simulation
relation uses allcontent as a function from labels to data values.

LEMMA 6.4 The following is true in all reachable states of
VStoTO-system. If l [ domain~allcontent! and l.origin 5 p, then l ,
^current.idp, nextseqnop, p&.
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PROOF. The only change is in labelp and the code shows that the new
label is less than the new ^current.idp, nextseqnop, p& triple. e

LEMMA 6.5 The following is true in all reachable states of
VStoTO-system. allcontent is a function.

PROOF. The only change is in label, and Lemma 6 shows the new entry
is for a new label. e

LEMMA 6.6 The following is true in all reachable states of
VStoTO-system. If l is in bufferp then l, a is in contentp for some a.

PROOF. Immediate induction. The only relevant actions are labelp

(which adds a new label to buffer and to the domain of content) and
newviewp (which empties buffer). e

The next invariants describe situations when certain information is
guaranteed not to appear in the state.

LEMMA 6.7 The following are true in all reachable states of
VStoTO-system. If currentp 5 ' or current.idp , g then

(1) pending@ p, g# 5 l.

(2) There is no message of the form ^p, p& in queue@g#.

(3) If current.idq 5 g then there is no ^p, p& in gotstateq.

(4) allstate@ p, g# 5 À.

(5) There is no pair of the form ^^g, p, p&, p& in x.con, for any summary x
[ allstate.

(6) There is no pair of the form ^^g, p, p&, p& in contentq, for any q.

PROOF. Part 1 is a simple induction; part 2 is an induction using part 1
in the gpsnd; part 3 is induction using part 2 in the gprcv. Part 4 follows
from parts 1, 2, and 3. Part 5 is direct from Lemma 6.4; part 6 follows
directly from part 5. e

LEMMA 6.8 The following are true in all reachable states of
VStoTO-system. If statusp 5 send and current.idp 5 g then

(1) pending@ p, g# 5 l.

(2) There is no element of the form ^p, p& in queue@g#.

(3) If current.idq 5 g then there is no ^p, p& in gotstateq.

(4) There is no pair of the form ^^g, p, p&, p& in x.con, for any summary x
[ allstate other than the summary whose components are those from
the local state of p.

(5) There is no pair of the form ^^g, p, p&, p& in contentq, for any q Þ p.
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PROOF. Part 1 is induction using Lemma 6.7 for the case newviewp;
part 2 is an induction using Lemma 6.7 for the case newviewp, and part 1
in the gpsnd; part 3 is induction using Lemma 6.7 for newviewp and part
2 in the gprcv. Part 4 is induction (where the case of gpsndp is ruled out
by the hypothesis on statusp); part 5 follows directly from part 4. e

LEMMA 6.9 The following are true in all reachable states of VStoTO-
system. For any p [ P, if statusp 5 collect and current.idp 5 g then
the following holds:

If x [ allstate@ p, g# then

(1) x.con # contentp.

(2) x.ord 5 orderp

(3) x.next 5 nextconfirmp

(4) x.high 5 highprimaryp.

PROOF. For parts 1 and 4, when the status of p first becomes collect in
view g, the only summary in allstate@ p, g# is that whose components are
the state of p (we appeal here to Lemma 10, since the statusp 5 send
immediately before it becomes collect). Thereafter, contentp changes only
by union with more pairs, and no action changes highprimaryp without
also changing statusp so it is no longer collect.

The other parts need more sophisticated proof, as they depend on the
property that no ordinary message is received at p until after all members’
state-exchange messages. As the rest of the paper relies only on part 4, we
omit the details. e

Now some simple facts about “established.”

LEMMA 6.10 The following are true in all reachable states of VStoTO-
system. For any p [ P, g [ G:

(1) If established@ p, g# then current.idp $ g.

(2) established@ p, current.idp# if and only if statusp 5 normal and
currentp Þ '.

PROOF. Straightforward induction. Depends on views coming in increas-
ing order. e

Here are some upper bounds on highprimaries.

LEMMA 6.11 The following are true in all reachable states of
VStoTO-system. For any p, q [ P, x [ summaries, g [ G:

(1) If established@ p, current.idp# and primaryp then highprimaryp 5
current.idp.
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(2) If established@ p, current.idp# and not~ primaryp! then
highprimaryp , current.idp.

(3) If current Þ ' and established@ p, current.idp# 5 false then
highprimaryp , current.idp.

(4) If q, x [ gotstatep then x.high , current.idp.

(5) If x, q is in queue@g# then x.high , g.

(6) If x is in pending@q, g# then x.high , g.

PROOF. Prove all these parts together using induction.

(1) When state-exchange is completed for a primary view (which estab-
lishes currentp), the equality is set explicitly.
Supposed established@current.idp# in both prestate s and poststate
s9; the events that could falsify the RHS are newview and a gprcv
that sets highprimary. But a newview~v!p has s9.statusp 5 send, so
Lemma 12 implies that s9.established@s9.current.idp# 5 false, a con-
tradiction.
A gprcv that sets highprimaryp has s.statusp 5 collect. Then
Lemma 12 implies that s.established@s.current.idp# 5 false, a con-
tradiction.

(2) Consider a gprcv that completes state-exchange, and so establishes a
nonprimary viewid g. The code sets highprimaryp to be the largest
high component of the summaries among the prestate’s gotstate and
the final state-exchange message. By parts 4 and 5, all of these are less
than g; hence the largest is also less than g.

(3) Consider newview~v!p. LHS becomes true. We claim RHS is also true
in the state s9 after the step. Parts 1, 2, and 3 together in the prestate s
imply that s.highprimaryp # s.current.idp. Since s9.current.idp .
s.current.idp, this means that s9.highprimaryp , s9.current.idp, as
needed.

(4) Depends on 5. A key fact is that a message only gets delivered if its
view is the same as the current view of p.

(5) Depends on 6.

(6) Depends on 3. This uses the fact that when a process sends, its status is
send; so by Lemma 4, currentp Þ ', and by Lemma 12,
established@ p, current.idp# 5 false. e

LEMMA 6.12 The following are true in all reachable states of
VStoTO-system.

(1) If x [ allstate@ p, g# then x.high # g.

(2) If x [ allstate@ p, g# then x.high # current.idp.
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PROOF. Part 1 is an easy induction. Part 2 follows using part 4 of
Lemma 6.7 e

The next two lemmas assert lower bounds on highprimaries.

LEMMA 6.13 The following is true in all reachable states of
VStoTO-system. For any p [ P, v [ created, such that established@ p,
v.id#, v.set contains a quorum, and current.idp . v.id, then
highprimaryp $ v.id.

PROOF. Let g 5 v.id. First consider actions that could make the hy-
pothesis true (we denote the state before the action as s, and that
afterward as s9).

(1) When established@ p, g# becomes true, current.idp 5 g, so the hypo-
thesis is false.

(2) Suppose a newview step converts the hypothesis from false to true. Then
s.established@ p, g# 5 s9.established@ p, g# 5 true, s.current.idp

# g, and s9.current.idp . g. Lemma 12 implies that s.current.idp

$ g, so it must be that s.current.idp 5 g. Then Lemma 13, part 1
implies that s.highprimaryp 5 g. Therefore, s9.highprimaryp 5 g,
as needed.
Now consider steps for which the hypothesis is true both before and
after the step, but that make the conclusion false.

(3) gprcv for a summary, if domain~s9.gotstatep! 5 s.current.setp and
s.statusp 5 collect, sets highprimaryp.
There are two cases. If s.primaryp 5 true, then since s9.current.idp

. g and s9.current.idp 5 s9.highprimaryp, we have that
s9.highprimaryp . g, which suffices.
On the other hand, suppose that s.primaryp 5 false. Since the hypo-
thesis is true before the step, the inductive hypothesis implies that
s.highprimaryp $ g. It suffices to show that s9.highprimaryp $

s.highprimaryp.
The step ensures that s9.highprimaryp 5 maxprimary
~s9.gotstatep!. Since p [ current.setp, s9.gotstatep must include
some ^p, x&. Then part 4 of Lemma 6.9 implies that x.high 5
s.highprimaryp. Now, maxprimary~s9.gotstatep! $ x.high, so
s9.highprimary $ s.highprimary. This suffices. e

LEMMA 6.14 The following are true in all reachable states of
VStoTO-system. For any p [ P, for any summary x, and for all v, w [

created:

(1) If established@ p, v.id#, v.set contains a quorum, w.id . v.id, and
x [ allstate@ p, w.id#, then x.high $ v.id.
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PROOF. Let g denote v.id, and g9 denote w.id. We need only consider
actions that could make the hypothesis true, since the conclusion is
unchanged in all transitions.

(1) When established@ p, g# becomes true, current.idp 5 g. Then part 4
of Lemma 6.7 implies that allstate@ p, g9# 5 À, which makes the
conclusion vacuously true.

(2) When x first gets into allstate@ p, g9#, this happens by putting it into
the state of p when current.idp 5 g9 . g. Then Lemma 6.12 implies
that highprimaryp $ g. e

LEMMA 6.15 The following are true in all reachable states of
VStoTO-system.

(1) If current.idp 5 g and established@ p, g# 5 false, then there is no x
[ allstate@ p, g# with x.high 5 g.

PROOF. Lemma 6.11 implies that highprimaryp , g.
We prove the statement by induction. newviewp is the only action that

can convert the hypothesis from false to true, and it guarantees the
conclusion, by Lemma 6.12 applied to the prestate.

To convert the conclusion from true to false, we would have to end the
step with highprimaryp 5 g (since the other pieces of allstate@ p# are
derived from p ’s state). But this does not happen, by the claim at the
beginning of the proof. e

LEMMA 6.16 The following is true in all reachable states of
VStoTO-system.

If x [ allstate@ p, g# then there exists v [ created and q [ v.set such
that

(1) x.high 5 v.id

(2) established@q, x.high#.

(3) x.ord 5 buildorder@q, x.high#.

(4) either x.high 5 g or current.idq . v.id

PROOF. The proof is by induction, so consider a step in which the state
changes from s to s9 by the action p. If x [ s9.allstate@ p, g#, then in most
cases, there is y [ s.allstate@ p, g# with y.high 5 x.high and y.ord 5
x.ord, to which we apply the induction hypothesis. The only cases where
this does not happen are as follows:

—p is the receipt by p of an ordinary message in a primary view, and x is
the summary whose components are taken from the state of p. In this
case we take v 5 g and q 5 p.
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—p is the establishment of a new primary view g at p, and x is the
summary whose components are taken from the state of p. In this case
we take v 5 g and q 5 p.

—p is newview~v!p, where v.id 5 g, and x is the summary whose
components are taken from the state of p. In this case, there is y [

s.allstate@ p, s.currentp# with y.high 5 x.high and y.ord 5 x.ord, to
which we apply the induction hypothesis. e

LEMMA 6.17 The following is true in all reachable states of
VStoTO-system. If v [ created and established@ p, v.id# then for every
q [ v.set, current.idq $ v.id.

PROOF. When established@ p, v.id# first becomes true, the code for the
gprcv action shows that domain~gotstatep! 5 v.set, so allstate@q, v.id#
is nonempty for all q [ v.set. Part 4 of Lemma 6.7 thus implies
current.idq $ v.id. This is maintained inductively in all later states, by
the monotonicity of currentq. e

The following is a key invariant; it can be used to show that information
from certain processors’ tentative orders for a primary view v is also
present in all summaries with higher viewids. The hypothesis says that
every processor in v.set that has a current.id higher than v.id has
succeeded in establishing v and, moreover, has succeeded in including the
sequence s in its order for view v. The conclusion says that any place in
the state where information about a higher view than v is present,
information about s is also present.

LEMMA 6.18 The following is true in all reachable states of
VStoTO-system. Suppose that v [ created, v.set contains a quorum, s

[ L,, and for every p [ v.set, the following is true: If current.idp .
v.id then established@ p, v.id# and s # buildorder@ p, v.id#. Then for
every x [ allstate with x.high . v.id, s # x.ord.

PROOF. The statement is vacuously true if v [y created.
Otherwise argue by induction, where s denotes the state before a step

and s9 the state afterward.
If v [ s9.created and vnot [ s.created, then the action involved must

be createview~v!. In this case, we claim that the conclusion is true
because no x [ s9.allstate has x.high . v.id. To see this, fix x [

s9.allstate, say, x [ s9.allstate@ p#. Then Lemma 14 implies that x.high
# s9.current.idp. Lemma 3 implies that s9.currentp [ s9.created. And
the code for createview~v! implies that v.id is the largest id in
s9.created, in particular, that v.id $ s9.current.idp. So x.high # v.id.

So for the rest of the argument, we fix v and assume that v [

s.created. Also fix s.
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As usual, the interesting steps are those that convert the hypothesis from
false to true, and those that keep the hypothesis true while converting the
conclusion from true to false.

In this case, there are no steps that convert the hypothesis from false to
true: if there is some p [ v.set for which s.current.idp . v.id and either
s.established@ p, v.id# 5 false or s is not a prefix of buildorder@ p,
v.id#, then also s9.current.idp . v.id (the id never decreases) and either
s9.established@ p, v.id# 5 false or s is not a prefix of s9.buildorder@ p,
v.id#. (These two cases carry over, since s.current.idp . v.id implies that
established@ p, v.id# and buildorder@ p, v.id# cannot change during the
step.)

So it remains to consider any steps that keep the hypothesis true while
converting the conclusion from true to false. So suppose that x [

s9.allstate and x.high . v.id. If also x [ s.allstate then we can apply
the inductive hypothesis, which implies that s # x.ord, as needed. So the
only concern is with steps that produce a new summary.

Any step that produces the new summary x by modifying an old sum-
mary x9 [ s.allstate, in such a way that x9.ord # x.ord and x9.high 5

x.high, is easy to handle: For such a step, x9.high . v.id and so the
inductive hypothesis implies that s # x9.ord # x.ord, as needed. So the
only concern is with gprcvp steps that deliver the last state-exchange
message to some process p.

If the gprcvp is not for a primary, then the new summary x that is
produced, in p ’s state, takes its highprimary and order values directly
from some summary x9 which is in the range of s9.gotstatep. By the code,
such an x9 is either in the range of s.gotstatep, or else it is the summary
whose receipt is the step we are considering. In either of these cases, x9 [

s.allstate, so the inductive hypothesis yields the result.
This leaves the case where gprcvp establishes a primary w, and x is the

summary composed of the new values of the state components of p. Thus
x.high 5 w.id. Let x9 be the summary of q9 5 chosenrep in state s.

We claim that x9.high $ v.id. To see the claim, fix any element q99 in
w.set ù v.set; such a q99 must exist, because each contains a quorum.
Recall that the condition for establishing a primary shows
domain~s9.gotstatep! 5 w.set, so by the code, either q999 [

domain~s9.gotstatep!, or else q99 is the sender of the message whose
receipt is the step we are examining. In the former case, let x99 be the
summary s.gotstate~q99!p; in the latter let x99 be the summary whose
receipt is the event. In either case we have x99 [ s.allstate@q99, w.id#.
Thus, part 4 of Lemma 9 implies that s.current.idq99 $ w.id. We have
that x.high . v.id by assumption, and x.high 5 w.id by the code; there-
fore, w.id . v.id. So also s.current.idq99 . v.id.
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Recall that we are in the case where the hypothesis of this lemma is true.
Therefore, by this hypothesis, we obtain that s.established@q99, v.id# and
s # s.buildorder@q99, v.id#. By Lemma 16, (applied with q99 replacing p)
we obtain x99.high $ v.id. By the definition of q9 as a member that
maximizes the high component in the summary recorded in gotstate, we
have x9.high $ x99.high. Therefore x9.high $ v.id, completing our dem-
onstration of the claim.

If x9.high . v.id then we can apply the induction hypothesis to x9, and
we are done, since x9.ord # x.ord. So suppose x9.high 5 v.id. Note that
x9 [ s.allstate@q9, w.id#. By Lemma 18, there must exist7 q [ v.set so
that s.established@q, v.id# x9.ord 5 s.buildorder@q, v.id#, and (either
x9.high 5 w.id or s.current.idq . v.id). Since x9.high 5 v.id ,
x.high 5 w.id, the last property can be simplified to s.current.idq .
v.id. By monotonicity of current, we have s9.current.idq . v.id. The
hypothesis of this lemma says that this forces s # s9.buildorder@q,
v.id#. Since x9.ord # x.ord by the code for this event, and x9.ord 5
s.buildorder@q, v.id# as shown above, and s.buildorder@q, v.id# 5
s9.buildorder@q, v.id#, since q is not currently in view v, this is what we
need. e

The invariant given in the corollary implies, that once all members of a
primary view agree on a common part of the tentative order, all processors
in a higher view will also share that sequence in that order.

Corollary 6.19 The following is true in all reachable states of
VStoTO-system. Suppose that v [ created, v.set contains a quorum, s

[ L,, and for every p [ v.set, established@ p, v.id# and s #

buildorder@ p, v.id#. Then for every x [ allstate with x.high $ v.id,
s # x.ord.

PROOF. If x.high . v.id, then we can apply Lemma 6.16, since the
premise of this corollary deals with every p [ v.set, and therefore is
stronger than the premise of Lemma 6.18, which only covers those p where
current.idp . v.id.

When x.high 5 v.id, we apply apply Lemma 18 to x, which gives v9 [

created and q9 [ v9.set such that x.high 5 v9.id, established@q9,
x.high#, and x.ord 5 buildorder@q9, x.high#. Since v.id 5 v9.id,
Lemma 4.1 shows v 5 v9. Substituting in the facts above we see x.ord 5
buildorder@q9, v.id#. Since q9 [ v.set, we can apply the premise of the
corollary to see that s # buildorder@q9, v.id#, i.e., s # x.ord, as
required. e

7Direct application of the lemma actually shows the existence of some v̂ and q [ v̂.set, but
since x9.high 5 v̂.id and x9.high 5 v.id, uniqueness of viewids shows we may take v̂ to be v
itself.
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The next lemma makes precise the fact that a label is in safe-labelsp

only after it (and all prior labels in orderp) were placed in orderq at every
member q of current.setp

LEMMA 6.20 If l [ safe-labelsp and s is a prefix of orderp that is
terminated by l, then primaryp and for all q [ current.setp, s #

buildorder@q, current.idp#

The next lemma shows, that in any summary, the ord component is
closed under the relation “sent-before-by-one-client.”

LEMMA 6.21 The following is true in all reachable states of
VStoTO-system. Suppose l, l9 [ L and i [ N.0. If l, l9 [

domain~allcontent! and l.origin 5 l9.origin and l , l9 and x [

allstate and l9 5 x.ord~i9! then there exists i such that i , i9 ∧ l 5
x.ord~i!.

Next we show that x.confirm is a prefix of a known sequence. This leads
to consequences that show the consistency of the confirmed sequence of
labels at different places in the system.

LEMMA 6.22 The following is true in all reachable states of
VStoTO-system. If x [ allstate then

(1) There exists v [ created such that v.id # x.high, v.set contains a
quorum, and for every q [ v.set, established@q, v.id# and
x.confirm # buildorder@q, v#.

(2) x.next # length~x.ord! 1 1

Remark. An immediate consequence of part (2) is that
length~x.confirm! 1 1 5 x.next.

PROOF. The strategy is to show that (1) and (2) hold in the poststate, by
induction, using (1) and (2) from the prestate.

How is the Poststate Proved? In the step from s to s9, in most cases,
there is y in s.allstate so that y.next 5 x.next, y.ord 5 x.ord (and
hence y.confirm 5 x.confirm), as well as y.high 5 x.high. If this holds,
induction hypothesis gives us what we want, since buildorder@q, v#
increases monotonically through an execution.

The places where a problem might happen are the following:

—confirmp. If x is not the summary from the state of p in s9, the inductive
argument works. If x is the summary from the state of p in s9, the
precondition of the event is that the newly confirmed message has label
in s.safe-setp, so Lemma 6.20 shows that we have (1) with taking v to be
s.currentp 5 x.high. The precondition also gives ~x.next 2 1! [

domain~x.ord!, thus showing (2).
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—gprcv~^l, a&!p. For a summary other than that from the state of p, the
inductive argument applies. Where x is the summary from the state of p,
let y denote the summary in the prestate taken from the state of p. The
code shows that x.high 5 y.high, x.next 5 y.next, and that x.ord is
an extension of y.ord. By (2) applied to y, we see that y.next #

length~ y.ord! 1 1, and therefore that x.next # length~x.ord! 1 1.
This is (2) applied to x; also it shows that x.confirm 5 y.confirm, so
that the inductive hypothesis of (1) applied to y gives (1) applied to x.

—receipt of the final state-exchange message at p. For a summary other
than that from the state of p, the inductive argument applies. Where x is
the summary from the state of p, let w denote the summary, among those
in gotstatep after the action, with the highest value for w.next. The code
shows that x.next 5 w.next. Now w is in allstate in the prestate (it is
either in s.gotstate, or else it is the summary received in the final
state-exchange message, in which case it is in the queue component of
VS-machine). The inductive hypothesis shows that w.confirm has
length w.next 2 1, and that there is v [ s.created such that v.id #

w.high and @q [ v.set.~s.established@q, v.id# ∧ w.confirm #

buildorder@q, v#!. Now let z denote the summary of
chosenrep~gotstate!, as calculated in the effect of the action. Since
z.high $ w.high $ v.id (recall the definition of z as being from a
representative, i.e., having maximal highprimary among summaries in
gotstate), Corollary 6.19 shows that w.confirm # z.ord. Since z.ord
# x.ord by the code (whether the newly established view is primary or
not), we deduce that w.confirm is a prefix of x.ord; as
length~w.confirm! 5 w.next 2 1 5 x.next 2 1, we have x.confirm
5 w.confirm. Also by the code (for a nonprimary view) or Lemma 14 (for
a primary view) we have x.high $ w.high. Thus the inductive hypo-
thesis applied to w, along with the monotonicity of the set created and
the boolean established@q, v.id#, gives (1) and (2) for x. e

Corollary 6.23 The following is true in all reachable states of
VStoTO-system. If x1, x2 [ allstate and x1.high # x2.high, then
x1.confirm # x2.ord.

PROOF. This is done by using Lemma 6.22 (part (1)) with x 5 x1, giving
v with v.id # x1.high and x1.confirm # buildorder@q, v#. Now the hypo-
thesis of Corollary 6.19 applies for s 5 x1.confirm; since x2.high $ v.id
the conclusion of that lemma holds for x2, i.e., x1.confirm # x2.ord. e

Corollary 6.24 The following is true in all reachable states of
VStoTO-system. For any x, x9 [ allstate, either x.confirm #

x9.confirm or x ’ .confirm # x.confirm.
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PROOF. Without loss of generality, x.high # x9.high. From Lemma
6.23, we have that both x.confirm and x9.confirm are prefixes of
x9.order. e

Invariant 6.24 allows us to define another derived variable that repre-
sents the collective knowledge of the confirmed order, throughout the
system. Namely, in any reachable state, we write allconfirm for
lubx[allstate~x.confirm!.

6.2 Simulation Relation

Next, we define the simulation relation f. We define it as a function from
reachable states of VStoTO-system to states of TO-machine. (We assume
an arbitrary default value for unreachable states.) Namely, if x is a
reachable state of VStoTO-system, then f~x! 5 y where:

(1) y.queue 5 applyall~x.allcontent, origin, x.allconfirm!,where the
selector origin is regarded as a function from labels to processors.

(2) y.next@ p# 5 x.next-reportp.

(3) y.pending@ p# 5 applyall~x.allcontent, s! z x.delayp where s is the
sequence of labels such that
(a) range~s! is the set of labels l such that l.origin 5 p, l, a [

x.allcontent for some a, and l [y range~allconfirm!.
(b) s is ordered according to the label order.

The first clause says that y.queue is the sequence of ^value, origin&,
pairs corresponding to the sequence x.allconfirm of labels that are con-
firmed anywhere in the system. For each label in x.allconfirm, the set
x.allcontent, which contains all the content information that appears
anywhere in the system, is used to obtain the value, and origin is used to
extract the origin. (Note that the set of pairs x.allcontent is treated as a
function, and that the two functions are paired together into one for use
with the applyall operator.) The second clause defines y.next@ p# directly
from the corresponding next-pointer in x. The third clause defines
y.pending@ p# to be the concatenation of two sequences. The prefix of
y.pending@ p# is the sequence of values corresponding to all the labels in
the system with origin p that are not included in x.allconfirm, arranged
in label order. For each such label, x.allcontent is used to obtain the
value. The suffix of y.pending@ p# is the values in x.delayp. Note that the
well-definedness of this simulation rests on the invariant that says that
x.allcontent is a function, and on Invariant 6.24, which yields the defined-
ness of allconfirm.

LEMMA 6.25 Function f is a forward simulation from VStoTO-system to
TO-machine.
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PROOF. The correspondence in the initial state is trivial. So consider any
step ~x, p, x9! of VStoTO-system, and y 5 f~x!. We argue depending on
the action involved in p.

—p 5 bcast~a!p. Since p is an input to TO-machine, p is enabled in y.
Now the effect of p shows that x9.allconfirm 5 x.allconfirm,
x9.allcontent 5 x.allcontent, and x9.pending@ p# 5 x.pending@ p# z

^^a&&. This implies that f~x9!.pending@ p# 5 f~x!.pending@ p# z ^^a&&,
thus showing that ~ f~x!, p, f~x9!! is a step of TO-machine.

—p 5 label~a!p. Since p is not an action of TO-machine, we need to
show that f~x! 5 f~x9!. Now the effect of p shows that x9.allconfirm 5
x.allconfirm, and x9.allcontent is the union of x.allcontent with l0,
a where l0 5 ^x.currentp, x.nextseqnop, p&; by Lemma 6, this new
label l0 is greater than all labels in the domain of x.allcontent. Thus, let
us consider the sequence of labels s9 (arranged in label order) such that
range~s9! is the set of labels l such that l.origin 5 p, ^l, a9& [

x9.allcontent for some a9, and l [y range~x9.allconfirm!. We see that
s9 is related to the sequence s (defined the same way but using x instead
of x9) by s9 5 s z ^^l0&&. Therefore applytoall~x9.allcontent, s9! 5
applytoall~x.allcontent, s! z ^^a&&. On the other hand, the precondi-
tion of p shows that a is the head of x.delayp, and so the effect of p

means x.delayp 5 ^^a&& z x9.delayp. Thus, f~x9!.pending@ p# is the same
as f~x!.pending@ p#, because in the concatenation that defines this
component, the element a is simply transferred from suffix to prefix.
Therefore f~x9! 5 f~x!.

—p 5 confirmp. Clearly the effect of p shows x.allcontent 5
x9.allcontent. If x.nextconfirmp # length~x.allconfirm! then Lemma
6.24 and the effect of p shows that x9.allconfirm 5 x.allconfirm, so
that f~x! 5 f~x9!. Otherwise x.nextconfirmp 5 length~x.allconfirm!
1 1, so the effect of p shows that x9.allconfirm 5 x.allconfirm z ^l&
where l 5 x.orderp~x.nextorderp!. Let q 5 l.origin and a 5
x.allcontent~l!. We claim that ~ f~x!, to-order~a, q!, f~x9!! is a step of
TO-machine. We first show that to-order~a, q! is enabled in f~x!. We
have l [ domain~x.allcontent! and l [y setof~x.allconfirm!; this
means that a is an element of the sequence f~x!.pending@q#. Also by
Lemma 6.21, any lower label with origin q is in x.confirmp and so in
x.allconfirm. Since the sequence S used to define f~x!.pending@q# is
arranged by label, we see that l is the head of S, and so a is the head of
f~x!.pending@q#, as required. Further, the equation above for
x9.allconfirm shows that f~x9!.queue 5 f~x!.queue z ^^^a, p&&&, and
this is what is needed to show that p takes f~x! to f~x9!.
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—p 5 gprcv~s!p, q. In some cases this may change the value of
nextconfirmq, but in every situation it leaves allconfirm unchanged (it
only moves nextconfirmq to a value already somewhere in allstate)
Thus f~x9! 5 f~x!.

—p 5 brcv~a!pq. We need to show that p is enabled in f~x! as an action of
TO-machine, but this is immediate from the fact that p is enabled in x
as an action of VStoTO. Similarly, the effect corresponds (only
nextreportq is altered).

—Other actions. The other actions leave f~x9! 5 f~x!. e

THEOREM 6.26

Every trace of VStoTO-system is a trace of TO-machine.

7. PERFORMANCE AND FAULT-TOLERANCE

We argue that the performance and fault-tolerance characteristics of TO
(for certain values of the parameters) are implied by the corresponding
ones for VS (for certain parameter values), together with performance and
fault-tolerance characteristics of the VStoTO processes. In order to do this,
we need a richer model for the system than we have been using so far. This
richer model must include timing and failure information. We define this
richer model in two separate pieces, for VStoTO and for VS.

For the VStoTO part, we define a timed automaton VStoTO9p for every
p. This timed automaton is obtained by modifying the untimed automaton
VStoTOp as follows:

—Add new input actions goodp, badp, and uglyp.

—Add new time-passage actions n~t! for all t [ R.0.

—Add a new state component failure-status, with values in $good, bad,
ugly%, initially good.

—Add new code fragments for the failure-status actions, just setting the
failure-status variable appropriately.

—Add a new precondition to each output and internal action, that failure-
status Þ bad.

—Add a code fragment for each n~t!:

Internal n~t!
Precondition:

if failure-status 5 good then
no output or internal action is enabled

Effect:
none
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The new precondition on output and internal actions says that the
processor takes no steps when its failure-status is bad. The new time-
passage actions are allowed to happen at any point, unless there is some
output or internal action that is supposed to happen immediately (because
it is enabled and the processor is good).

For the VS part, we now fix b and d to be particular constants. We
assume that we have any timed automaton A that satisfies the specifica-
tion VS~b, d, Q! from Section 4 for every set Q of processors that contains
a quorum.

Define VStoTO9-system to be the composition of A and VStoTO9p for all
p [ P, with the actions used for communication between the two layers
(i.e., the gpsnd, gprcv, safe, and newview), hidden. Note that the
failure-status input actions are not hidden. The composition operator used
here is timed automaton composition.

THEOREM 7.1 We show that any admissible timed trace of
VStoTO9-system satisfies TO-property, for certain values of the parame-
ters: every admissible timed trace of VStoTO9-system satisfies TO-
property~b 1 d, d, Q! for every Q that contains a quorum.

PROOF. Let ~b, `! be any admissible timed trace of VStoTO9-system,
and let a be an admissible timed execution of VStoTO9-system that gives
rise to b. Fix Q to be any set of processors containing a quorum.

We first show Condition 1 of the definition of TO-property, that b with
the timing information removed is a trace of TO-machine. This follows
from general composition results for timed automata (e.g., see Chapter 23
of Lynch [1996]), using what we have already proved in the safety part of
the paper.

In more detail, regard a as a timed execution of the composed system
composed of VStoTO9 and A, without the interface actions being hidden.
Then project a on VStoTO9 and A to give timed executions a1 of VStoTO9
and a2 of A, respectively—this uses a projection result for timed automata.
Removing the timing information from the timed trace of a1 yields a trace
of VStoTO, by definition of VStoTO9. The first part of VS-property
implies that removing the timing information from the timed trace of a2

yields a trace of VS-machine. Now paste these two timed traces together,
using a pasting lemma for composition of untimed automata, to yield a
timed trace b1 of the composition of VStoTO and VS-machine. We claim
that b1 restricted to the external actions of TO-machine is equal to the
original trace b. But then b is a trace of VStoTO-system, and so by
Theorem 6.26 is a trace of TO-machine.

The more interesting property to show is Condition 2, the performance
and fault-tolerance property. Our strategy for proving the needed property
of b is to use an auxiliary “conditional” property VStoTO-property of a,
stated in Figure 11.
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VStoTO-property uses the “conclusion” part of VS-property~b, d, Q!
for A, together with the performance and fault-tolerance assumptions for the
processors VStoTO9p, to infer the conclusion part of TO-property~b 1 d,
d, Q!.

We prove VStoTO-property operationally. In our proof, the execution
fragment a999 whose existence is asserted in the conclusion of VStoTO-
property extends until every member of Q has received the safe indication
for every state-exchange message sent in view g, S. Our proof uses the fact
that Q contains a quorum, as well as the fact that the “good” processors
perform enabled actions immediately.

Based on VStoTO-property, it is easy to unwind the definitions and
prove that the complete system satisfies TO-property~b 1 d, d, Q!. Sup-
pose that ~b, `! 5 ~g, l!~d, `! is an admissible timed trace of VStoTO9-
system. Suppose that all the following hold:

(1) d contains no failure-status events for locations in Q or for pairs
including a location in Q.

(2) All locations in Q and all pairs of locations in Q are good after g.

(3) If p [ Q and q [y Q then ~ p, q! is bad after g.

We show that ~d, `! can be written as ~d9, l9!~d99, `!, where

(1) l9 # b 1 d.

(2) Every data value sent from a location in Q in b, say at time t, is
delivered at all members of Q by time max~t, l 1 l9! 1 d.

(3) Every data value delivered to any location in Q, say at time t, is
delivered at all members of Q by time max~t, l 1 l9! 1 d.

Fig. 11. Definition of VStoTO-property.
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By the definition of VS-property~b, d, Q!, we have that ~d, `! can be
written as ~e9, t9!~e99, t99!, where

(1) t9 # b.

(2) No newview events occur in e99 at processors in Q.

(3) The latest views at all locations in Q after ge9 are the same, say g, S,
where S 5 Q.

(4) Every message sent from a location in Q in b while in view g, S, say at
time t, has corresponding safe events at all members of Q by time
max~t, l 1 t9! 1 d.

Next, we apply the conditional property to the timed execution a that
gives rise to the timed trace ~b, `!. Let a0, a1, and a2 be the parts of a that
give rise to g, e9, and e99, respectively (see Figure 12).

The conditional property implies that a2 can be written as a3a4, where

(1) ltime~a3! # d.

(2) Every data value sent from a location in Q in a, say at time t, is
delivered at all members of Q by time max~t, ltime~a0a1a3!! 1 d.

(3) Every data value delivered to any location in Q, say at time t, is
delivered at all members of Q by time max~t, ltime~a0a1a3!! 1 d.

Then we claim that taking d9 to be the timed trace of a1a3 and d99 to be
the timed trace of a4 yield the needed properties. To see that l9 # b 1 d,
note that l9 5 ltime~a1! 1 ltime~a3! # b 1 d. For the delivery times, the
conclusion of the conditional property provides bounds in terms of
ltime~a0a1a3!, which is the same as l 1 l9, which is as needed. e

As a consequence of Theorem 7.1, we have the main result:

THEOREM 7.2 VStoTO9-system satisfies the specification TO~b 1 d,
d, Q!, for every Q that contains a quorum.

Fig. 12. Performance argument diagram.
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8. IMPLEMENTING VS

In this paper we do not offer a formal proof that VS can be implemented.
Instead, we sketch one implementation, informally. The implementation is
based on the three-round membership protocol8 given by Cristian and
Schmuck [1995]. In this protocol, once a view is formed, it is “held together”
by a circulating token, which is started by a deterministically chosen
leader, and travels from member to member around a logical ring. Each
processor knows the size of the ring, and so it sets a timer that expires if
the token does not return in reasonable time. If a member crashes, or
communication failure causes the token to be lost or delayed, the timer
expiration triggers formation of a new view. Similarly a new view is
initiated if contact occurs from a processor outside the current membership.

Once a processor determines that a new view is needed, it broadcasts a
call-for-participation in the new view (together with a unique viewid chosen
to be larger than any the processor has seen). The membership of the view
is all processors that reply to the broadcast. A processor may not reply to
one call after replying to another with higher viewid. Once the membership
is determined, this is sent to the members which then join the view (unless
they have already agreed to participate in a view with higher viewid). A
leader within the view membership launches the token.

To provide ordered message delivery, we use the token to carry the
sequence of messages. Each processor buffers messages from the client
until the token passes; the messages are then appended to the token. Each
processor examines the sequence carried by the token, and passes to its
client any messages that it has not already passed on. The token also
carries an indication of how many messages each member passed to its
client, when the token last left that member. This is the basis for the safe
indication: a message is safe once the token records that all members have
passed it to the corresponding clients.

Suppose the following hold of the underlying physical system of proces-
sors and links:

—While statusp 5 goodp, processor p takes any enabled step immediately.

—While statusp 5 bad, processor p takes no locally controlled step.

—While statuspq 5 good, every packet sent from p to q arrives within
time d.

—While statuspq 5 bad, no packet is delivered from p to q.

As analyzed in Cristian and Schmuck [1995] the protocol above implements
VS~b, d, Q!, where Q is any set of processors; b 5 9d 1 max$p 1 ~n 1
3!d, m%; and d 5 2p 1 nd. Here, n is the number of processors in Q, p is

8A different implementation could use the one-round protocol of Cristian and Schmuck [1995].
However, this would stabilize less quickly.
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the spacing of token creation by the ring leader (this must satisfy p . nd),
and m is the spacing of attempts to contact newly connected processes.

Some Remarks about a Correctness Proof for this Implementation. The
safety claim involves showing that any trace of the implementation is a
trace of VS-machine. Since traces include only external events (and not
internal events like createview), the implementation need not preserve
the order of createview events (in fact, the implementation need not even
have createview events).

To show this trace inclusion, we use WeakVS-machine. We first show
that WeakVS-machine implements VS-machine, in the sense of trace
inclusion, provided that the viewid set G does not contain an infinite
number of elements smaller than any particular element g. This proof is
achieved by reordering createview events, pushing any such event earlier
than any createview event for a bigger view.

Then use a forward simulation to show that the algorithm implements
WeakVS-machine. This forward simulation should be straightforward,
mapping to createview in WeakVS-machine the event in Cristian and
Schmuck [1995] where a processor defines the membership of the view,
after waiting 2d units, since sending the “newgroup” message (the member-
ship is the set that sent “accept” responses). Uniqueness of viewids is
immediate, since in Cristian and Schmuck [1995] they have a procid as
low-order part (and a stable seqno as high-order part). Note that we still
have monotonicity on the viewids that p sees, because newview~v!p still
has precondition that v.id . current.idp.

An operational argument should work for performance and fault-toler-
ance. In showing implementability of VS, we focused on simplicity and
feasibility. While the approach we presented can be further optimized, we
note that token-based solutions have been used in real group communica-
tion implementations [Amir et al. 1995].

9. CONCLUSIONS AND DISCUSSION

The construction of distributed applications is substantially aided by the
availability of distributed-system building blocks, such as message passing,
multicast, or remote procedure call. Some sophisticated applications are
most effectively aided by the availability of building blocks providing
higher-level functions and guarantees, such as universally ordered broad-
cast. In order for a building block to be useful, (1) it must be precisely
specified, (2) the specification must be as simple as possible, (3) the
correctness and performance guarantees must be explicitly stated, and (4)
last but not least, the building block must be implementable.

We presented a simple specification for a partitionable group communi-
cation service, called VS. We demonstrated the utility of the service by
using it in specifying and proving correct a total-order messaging service.
The performance and fault-tolerance properties of the total-order service
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are derived from the performance and fault-tolerance properties of the
group communication service. We also described one implementation of the
service.

Other results based on this VS specification include De Prisco et al.
[1998], Dolev et al. [1999], and Fekete et al. [1998] that show a range of
extended services, which can be built with ours.

Ongoing research in this area is dealing with other specifications, e.g.,
Babaoglu et al. [1998], Hickey et al. [1999], and De Prisco et al. [1999], and
systems and implementations, e.g., Babaoglu et al. [1998] and Hayden
[1998].
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