6.851: ADVANCED DATA STRUCTURES, SPRING 2021 Prof. Erik Demaine, Josh Brunner, Dylan Hendrickson, Yevhenii Diomidov

Problem Set 8 Solutions

Due: Thursday, April 15, 2021

Problem 8.1 [Signature Compression].

Solution: We describe two solutions.

(a) Call the input x, and let $m = \sum_{i=1}^{k} 2^{i(w/k - \lg n)}$. The output is $(x \cdot m) \gg (w - k \lg n)$. This obviously takes O(1) word RAM operations; m can be hardcoded or can be computed in O(1) time as a geometric series.

Each 1 bit in *m* shifts a copy of *x* by its position. In particular, the $2^{i(w/k-\lg n)}$ bit shifts h_i from its initial position, ending iw/k bits from the left edge, to ending $i \lg n$ bits from the left edge. The sum of these shifts has all the h_i compressed in the leftmost $k \lg n$ bits, and we then shift the whole word to put them at the right end instead.

Unfortunately, $x \cdot m$ has more terms than the ones we want: for every i and j, it shifts h_i by $2^{j(w/k-\lg n)}$. We must show that only the desired shifts (when i = j) land in the leftmost $k \lg n$ bits; the rest of the bits are ignored by the shift. Two copies of h_i with different values of j land at least $w/k - \lg n$ bits apart. As long as this is more than $k \lg n$, since the desired copy of h_i lands entirely in the leftmost $k \lg n$ bits, no other copy could land even partially in the leftmost $k \lg n$ bits.

So it suffices to have $w/k - \lg n > k \lg n$. But $w/k = \lg^2 n$ and $k = \lg^{\varepsilon} n$, so this is equivalent to $\lg^2 n - \lg n > \lg^{1+\varepsilon} n$, which is true for $\varepsilon < 1$ and sufficiently large n.

(b) Call the input x, and let $q = 2^{w/k} - 2^{\lg n}$. The output is x % q.

To prove correctness, it suffices to show that correct output $y \equiv x \mod q$, and y < q. Then x % q = y, as desired.

The input is $x = \sum_{i=0}^{k-1} h_{k-i} 2^{iw/k}$, and the correct output is $y = \sum_{i=0}^{k-1} h_{k-i} 2^{i \lg n}$. We have $2^{w/k} \equiv 2^{\lg n} \mod q$ $2^{iw/k} \equiv 2^{i \lg n} \mod q$ $h_{k-i} 2^{iw/k} \equiv h_{k-i} 2^{i \lg n} \mod q$

$$x \equiv y \mod q.$$

The correct output is zero outside the rightmost $k \lg n$ bits, so

$$y < 2^{k \lg n} = 2^{\lg^{1+\varepsilon} n} < 2^{\lg^2 n} - 2^{\lg n} = q$$

for $\varepsilon < 1$ and sufficiently large n.