Problem 8.1 [Signature Compression]. Recall that the first step in Signature Sort, as described in Lecture 14, was to reduce each \(w = \lg^{2+\varepsilon} n \) bit input word to an \(O(\lg^{1+\varepsilon} n) \)-bit signature. We achieved this reduction by dividing each word into \(k = \lg n \) chunks of \(w/k = \lg^2 n \) bits each and applying a hash function to each chunk, reducing each chunk to \(\lg n \) bits. After hashing, our word was of the form

\[
0^{w/k-\lg n} h_1 0^{w/k-\lg n} h_2 \cdots 0^{w/k-\lg n} h_k,
\]

where each chunk hash \(h_i \) is \(\lg n \) bits long.

Describe an algorithm to compress this word so that all of the hashed chunks are shifted maximally to the right and in the same order, so that it has the form needed by the algorithm:

\[
0^{w-k\lg n} h_1 h_2 \cdots h_k.
\]

Your algorithm should take \(O(1) \) time using the word RAM operations \(+, -, *, /, \%, \&, |, \sim, \^, \ll, \gg\). You may assume that \(\varepsilon < 1 \).