6.851: ADVANCED DATA STRUCTURES, SPRING 2021 Prof. Erik Demaine, Josh Brunner, Dylan Hendrickson, Yevhenii Diomidov

Problem Set 7 Solutions

Due: Thursday, April 8, 2021

Problem 7.1 [Van Emde Boas in Space].

Solution:

(a) We prove matching bounds of $\Theta(n \log \log u)$.

Upper bound: An insert operation takes $O(\log \log u)$ time, and thus increases the size of the data structure by $O(\log \log u)$. We can build a vEB structure with any set of n elements using n insert operations, so the size is $O(n \log \log u)$.

Lower bound: For sufficiently large n, let $2^{\log^c n} \le u \le 2^{2^{dn}}$ for some constants c > 1 and d. Consider a set with n elements equally spaced throughout u. These elements are in different clusters, and will continue to be in different clusters as long as possible: until the size of the universe is less than n^2 . Since they are in different clusters, other than one which is stored as the min, they all incur $\Theta(1)$ space in their clusters and are recorded in the summary structure. This continues recursively: at the level-i summary structure, there are n-i remaining elements which each incur $\Theta(1)$ space, and the size of the universe is $u^{1/2^i}$. This continues as long as the size of the universe is at least n^2 , meaning

$$u^{1/2^{i}} \ge n^{2} \iff \frac{1}{2^{i}} \log u \ge 2\log n \iff \frac{\log u}{\log n} \ge 2^{i+1} \iff \log \log u - \log \log n - 1 \ge i.$$

We chose u such that $\log \log u \ge c \log \log n$ and c > 1, so $\log \log u - \log \log n - 1 = \Omega(\log \log u)$. In particular, there are $\Omega(\log \log u)$ levels of recursion, each of which uses $\Theta(n - i)$ space. So the total space is $\Omega(\min\{n \log \log u, n^2\})$. We chose u such that $\log \log u = O(n)$, so $\min\{n \log \log u, n^2\} = \Omega(n \log \log u)$; thus the total space is $\Omega(n \log \log u)$.

Other possible answers for f(n, u) include $n \log \log \frac{n}{u}$, n^2 , and u.

(b) Use indirection: store each group of $\Theta(\log u)$ consecutive elements in the set in a balanced binary search tree, with only one element from each group in the vEB structure. The vEB structure stores $O(\frac{n}{\log u})$ elements, so it takes space $O(\frac{n\log\log u}{\log u}) = o(n)$, and the total space of the binary trees is O(n). In each operation, we search the vEB structure in $O(\log \log u)$ time, and then search the relevant binary tree in $O(\log \log u)$ time. When a tree has size less than $\frac{1}{2} \log u$ or more than $2 \log u$, merge it with an adjacent tree or split it in $O(\log \log u)$ time.

One can alternatively use groups of $\Theta(\log \log u)$ elements, stored in a binary tree or even just as a list, taking $O(\log \log u)$ time to traverse.