
6.851: Advanced Data Structures, Spring 2021

Prof. Erik Demaine, Josh Brunner, Dylan Hendrickson, Yevhenii Diomidov

Problem Set 5 Solutions

Due: Thursday, March 25, 2021

Problem 5.1 [Walking the Matrix].

Solution: If N isn’t a power of two, make the matrix at most 4 times bigger by extending it to
the next power of two and filling with any value. Now assume N is a power of two.

We store the N × N matrix by dividing it into four equal quadrants and recursively storing
each quadrant consecutively. Equivalently, the location in memory at which we store the entry at
(i, j) computed by interleaving the bits of i and j. The key property of this order is that, for any
k, grid-aligned blocks of size 2k are consecutive.

We implement teleport and each move operation by simply maintaining the position of the
finger, and get by looking up the entry corresponding to the current position of the finger.

Choose k such that 2k ≤
√
B < 2k+1. Conceptually divide the matrix into squares of side

length 2k. Our layout ensures each square is consecutive in memory, so each square is contained in
at most 2 cache blocks.

The cache-oblivious model follows an optimal replacement strategy, which will be at least as
good as the following cache strategy:

• teleport: Clear the cache, and load the 9 squares (that is, the at most 18 cache blocks
containing them) surrounding the square containing the new position.

• Any move: If the new position is in the cache, do nothing. Otherwise perform a teleport.

• get: Do nothing; the current position is guaranteed to be in the cache.

Clearly teleport uses at most 18 = O(1) memory transfers, and get uses 0. After a teleport,
the nearest unloaded matrix entry is at least 2k > 1

2

√
B away from the current position, so we need

to perform at least 2k move operations before they trigger a teleport. So the amortized cost of
each move operation is at most 18/2k < 36/

√
B = O(1/

√
B). We store up to c = 18 cache blocks

simultaneously.

1


