Problem 4.1 [Generically Speaking]. Show that any point set \(S \) can be transformed into a generic point set \(S' \) preserving the strict ordering of coordinates and approximately preserving \(\text{OPT} \).

Solution: It suffices to solve the problem one dimension at a time:

Lemma 1. For any point set \(S \), there exists a point set \(S' \) such that

(a) No two points in \(S' \) share an \(x \) coordinate.

(b) Strict relative ordering of points is preserved.

(c) \(|\text{OPT}(S')| = O(|\text{OPT}(S)|) \).

Proof. Let \(T = \text{OPT}(S) \) and, for any \(x \), let \(S_x = [(x, y_1), (x, y_2), \ldots, (x, y_m)] \subseteq S \) denote the list of all points in \(S \) with that \(x \) coordinate, sorted in increasing order of \(y \).

Let \(\Delta x > 0 \) be smaller than any positive difference between \(x \) coordinates of points in \(S \). Then it is also smaller than any positive difference between \(x \) coordinates of points in \(T \). Let \(\varepsilon = \Delta x/n \).

Now we construct two sets \(S' \subseteq T' \):

(a) For each \((x, y_i) \in S_x\), add \((x + i\varepsilon, y_i)\) to \(S' \) and \(T' \).

(b) For each \((x, y_{i+1}) \in S_x\), add \((x + i\varepsilon, y_{i+1})\) to \(T' \).

(c) For each \((x, y) \in T\), add \((x, y)\) and \((x + n\varepsilon, y)\) to \(T' \).

Informally, for each vertical segment \(S_x \) we add a diagonal line going up and to the right to \(S' \) and a backwards "N" to \(T' \).

![Diagram](image)

Figure 1: "*" denotes a point in both \(S' \) and \(T' \), while "X" denotes a point in \(S' \) only.

It is easy to see that \(T' \) is satisfied, and that \(|\text{OPT}(S')| \leq |T'| \leq 4|T| = 4|\text{OPT}(S)| \).

1 Not to be confused with a forwards “И”, which has a thinner diagonal stroke and more symmetrical serifs.