6.851: ADVANCED DATA STRUCTURES, SPRING 2021 Prof. Erik Demaine, Josh Brunner, Dylan Hendrickson, Yevhenii Diomidov

Problem Set 4 Solutions

Due: Thursday, March 18, 2021

Problem 4.1 [Generically Speaking]. Show that any point set S can be transformed into a generic point set S' preserving the strict ordering of coordinates and approximately preserving OPT.

Solution: It suffices to solve the problem one dimension at a time:

Lemma 1. For any point set S, there exists a point set S' such that

- (a) No two points in S' share an x coordinate.
- (b) Strict relative ordering of points is preserved.
- (c) $|\operatorname{OPT}(S')| = O(|\operatorname{OPT}(S)|).$

Proof. Let T = OPT(S) and, for any x, let $S_x = [(x, y_1), (x, y_2), \dots, (x, y_m)] \subseteq S$ denote the list of all points in S with that x coordinate, sorted in increasing order of y.

Let $\Delta x > 0$ be smaller than any positive difference between x coordinates of points in S. Then it is also smaller than any positive difference between x coordinates of points in T. Let $\varepsilon = \Delta x/n$.

Now we construct two sets $S' \subseteq T'$:

- (a) For each $(x, y_i) \in S_x$, add $(x + i\varepsilon, y_i)$ to S' and T'.
- (b) For each $(x, y_{i+1}) \in S_x$, add $(x + i\varepsilon, y_{i+1})$ to T'.
- (c) For each $(x, y) \in T$, add (x, y) and $(x + n\varepsilon, y)$ to T'.

Informally, for each vertical segment S_x we add a diagonal line going up and to the right to S' and a backwards "N"¹ to T'.

*	Х				Х	*
*	Х			Х	*	Х
Х	Х					Х
*	Х		Х	*		Х
X ->	Х	•	•	•	•	Х
*	Х	Х	*	•	•	Х
*	Х	*				Х
*	*					Х
S/T	S'/T'					

Figure 1: "*" denotes a point in both S' and T', while "X" denotes a point in S' only.

It is easy to see that T' is satisfied, and that $|OPT(S')| \le |T'| \le 4|T| = 4|OPT(S)|$.

¹Not to be confused with a forwards "H", which has a thinner diagonal stroke and more symmetrical serifs.