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Problem 1.1 [Constant-Time Concatenate].

Solution:
The data structure to support constant-size concatenate and O(log n) BST operations is essen-

tially a 2-3 tree. Our data structure, D = (B, pmin, pmax) will be a 2-3 tree B, with backpointers and
two specific pointers pmin, pmax to the min/max nodes. All of the BST operations are performed the
same way as in a 2-3 tree while maintaining backpointers and updating pmin, pmax when necessary.
This takes constant overhead. For concatenate, one does the following for height h(B) ≤ h(B′):

concatenate((B, pmin, pmax), (B′, p′min, p
′
max)):

(a) Delete pmax of B in amortized constant time using the pointer.

(b) With p′min. Travel up backpointers to the height h(B) + 1 ancestor of p′min.

(c) Merge pmax to the left of the h(B) + 1 node and let B be it’s leftmost tree.

(d) Rebalance if necessary.

The case h(B) > h(B′) is done symmetrically. The cost of a concatenate is h(B)+rebalance cost.
This motivates the following potential function for our data structure to prove amortized constant
time:

Φ(D) = h(B) + #nodes that are full.

Doing a potential function analysis, we first find that all of the update/balancing operations
for a 2-3 tree still happen in amortized constant time with respect to this potential function. The
typical potential function used in such arguments is the number of full nodes and the height of a
2-3 tree can change by at most 1 after balancing. Thus, we can conclude that concatenate takes
amortized constant time from the following calculation:

Tamort = 1 + h(B) + rebalance + ∆Φ (1)

= [1 + h(B) + h(B′) ± 1 − (h(B) + h(B′))] + [rebalance + ∆#nodes that are full] (2)

= O(1). (3)

Since 2-3 trees are always balanced, search still takes O(log n) and thus predecessor, successor,
and the searches for delete/insert all take O(log n) time.
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