6.851: Advanced Data Structures, Spring 2021

Prof. Erik Demaine, Josh Brunner, Dylan Hendrickson, Yevhenii Diomidov

Problem Set 1

Due: Thursday, Feburary 25, 2021

Problem 1.1 [Constant-Time Concatenate]. Design a data structure D that maintains an ordered set of n keys while supporting the following operations:

- (a) $\mathbf{insert}(D, k)$ in $O(\log n)$ time: add key k to D's set.
- (b) $\mathbf{delete}(D, k)$ in $O(\log n)$ time: remove key k from D's set.
- (c) **predecessor**(D, k) in $O(\log n)$ time: find the largest key < k that is in D's set.
- (d) successor(D, k) in $O(\log n)$ time: symmetrically
- (e) **concatenate** (D_1, D_2) in O(1) time: given two data structures D_1 and D_2 , where all of the keys in D_1 are less than all of the keys in D_2 , destructively combine them into a single data structure holding their combined set of keys.

Each time bound can be amortized. (You should already be comfortable with amortization from a prerequisite class. If not, we recommend that you talk with the course staff for advice.) The variable n represents the number of keys currently in the data structure.

Hint: Start from B-trees.