
6.851 Advanced Data Structures (Spring’14)

Prof. Erik Demaine TAs: Timothy Kaler, Aaron Sidford

Problem 3 Sample solution

Maintain a list of log log n balanced binary search trees with the ith tree containing 22
i

keys. The largest
tree will contain all keys in the dictionary and the smaller trees act as “caches” that contain recently accessed
keys.

Insertions and deletions are performed by inserting/deleting the key in each of the log log n trees. The

time to perform an insert/delete operation on the ith tree is O(log 22
i

) = 2i. The total time to perform an

insert/delete operation, therefore, is
∑log logn

i=0 2i which is O(log n). The size constraints on each of the trees
are maintained via a least-recently used eviction policy. Each tree has an associated BST which contains its
keys sorted by their last access time. When inserting a key into a full tree the least-recently accessed key in
that tree is found and deleted.

To search for a key xi, we query each of the log log n trees in order of increasing size until the key is
found or it has been determined that the key is not in any of the trees. If the jth tree was the first tree in
the list containing xi, then we insert xi into the j − 1 smaller trees. The cost of searching the jth tree for
xi dominates the cost of inserting xi into the j − 1 smaller trees. The total time required to lookup the key
xi, therefore, is

∑j
i=0 2i which is O(2j).

Suppose that ti elements were accessed since the last search for key xi. These elements plus xi will be
contained in the dlog log(ti +1)eth tree which contains the ti +1 most recently accessed keys. The total time
to search for the key xi, by our previous argument, is bounded by the time to search the dlog log(ti + 1)eth
tree which is O(log ti).

Finally, we note that we can grow the data structure in linear time by appending a new tree to the list
whose contents are copied from the old largest tree. Shrinking the data structure consists of just deleting
the largest tree, provided all keys are already present in the second largest tree. Various resize criteria
work without effecting the amortized bounds — for example the dictionary can grow whenever its capacity
N < n2 and can shrink whenever N4 > n. This gives O(log n) amortized time bounds for the insert and
delete operations. It is also possible to deamortize, but this was not required of student solutions.


