This problem came from part 1 of the papers by Chazelle and Guibas on fractional cascading [1].

Let \(S \) denote the distinct \(a_i \) and \(b_i \) values of the intervals, i.e. \(S = \{a_i | i \in [n]\} \cup \{b_i | i \in [n]\} \).

Create a balanced binary search tree where the keys are \(S \). For each node \(d \) in the binary search tree let \(d_k \in S \) denote its key. Assign each interval \([a_i, b_i]\) to the least common ancestor of the nodes for \(a_i \) and \(b_i \) in the binary search tree. Note that interval \([a_i, b_i]\) is assigned to node \(d \) if and only if \(a_i \leq d_k \leq b_i \).

For every node \(d \) in the binary search tree create two sorted lists, \(d_A \) and \(d_B \). Let \(d_A \) contain the intervals \([a_i, b_i]\) assigned to \(d \) sorted by \(a_i \) and let \(d_B \) contain the intervals \([a_i, b_i]\) assigned to \(d \) sorted by \(b_i \). Note that if some \(x \) satisfies \(x \in [a_i, b_i] \) then \([a_i, b_i]\) is assigned to one of the nodes on the path from the root to either the successor or the predecessor of \(x \) in the binary search tree. Furthermore if for some node \(d \) we have \(x \leq d_k \) then if interval \([a_i, b_i]\) is in \(d_A \) and \(a_i \leq x \) then \(x \in [a_i, b_i] \) (since \(x \leq d_k \leq b_i \) for every \([a_i, b_i]\) \(\in A \)). Similarly if \(x \geq d_k \) then if \([a_i, b_i]\) in \(d_B \) and \(b_i \geq x \) then \(x \in [a_i, b_i] \) (since \(x \geq d_k \geq a_i \) for every \([a_i, b_i]\) \(\in d_B \)).

From the reasoning in the preceding paragraph we see that to compute \(\text{stab}(x) \) it suffices to find the successor and predecessor of \(x \) in the binary search tree, follow the paths to the root for these two nodes, and for each node on the path find the position of \(x \) in \(d_A \) and \(d_B \), and then walk these lists depending on whether \(x \leq d_k \) or \(x \geq d_k \). Since the balanced binary search tree has at most \(O(n) \) elements we see that its height is at most \(O(\log n) \) and therefore we look up \(x \) in \(O(\log n) \) lists connected in a graph of degree at most 3 (since a binary search tree is a graph of degree 3). Therefore, using fractional cascading we can find these elements in \(O(\log n + \log n) = O(\log n) \) time (since each list has at most \(O(\log n) \) elements.)

Putting this all together, we see that it takes \(O(n \log n) \) time to create the binary search tree and all the lists. Furthermore, since each interval is assigned to exactly one node, the total size of all the \(d_A \) and \(d_B \) lists is \(O(n) \). Therefore, using fractional cascading to link all these lists takes \(O(n) \) time and \(O(n) \) space. Given a query, \(\text{stab}(x) \) we can then find the paths for the successor and predecessor of \(x \) in \(O(\log n) \) time since the binary search tree is balanced and using fractional cascading we can find \(x \) in each \(d_A \) and \(d_B \) lists in \(O(\log n) \) time. Once we find \(x \) in each of these \(O(\log n) \) lists we can output the results of \(\text{stab}(x) \) in an additional \(O(\log n + k) \) time by just walking each of the \(O(\log n) \) lists depending on whether \(x \leq d_k \) or \(x \geq d_k \). Therefore, this data structure is as desired.

Another Solution: Some students noted that for an interval \([a_i, b_i]\) it is the case that \(x \in [a_i, b_i] \) if and only if the two dimensional point point \(p = (a_i, b_i) \) satisfies \(p \in (-\infty, x) \times (-\infty, x) \) and therefore you could use the result we saw in Lecture 5. This is a valid answer as well and no points were deducted if you did this; though we may have preferred you figure out how to use fractional cascading directly. \(\circ \).
References