6.851 Advanced Data Structures (Spring’14)
Prof. Erik Demaine TAs: Timothy Kaler, Aaron Sidford

Problem 1 Sample solution

This solution is modeled off Section 5.2 in [1].

Before describing how to implement the retroactive data structure, we will briefly sketch an implementation of a non-retroactive dynamic read-only array with the required operations. This data structure can be thought of as a deque with an extra operation \(\text{get}(i) \) to obtain its \(i \)th element.

Suppose that you know the maximum size of the read-only array is \(m \). Maintain an array \(A \) of size \(2m+1 \) indexed from \(-m, -m+1, \ldots, m\) with the 0th element omitted. In addition, maintain two counters \(L \) and \(R \) that maintain the net number of elements added to the left and right end of the array. The operation \(\text{addR}(x) \) sets \(A[R+1] = x \) and increments \(R \), and \(\text{remR}(x) \) sets \(A[R] = 0 \) and decrements \(R \). \(\text{addL} \) and \(\text{remL} \) are implemented analogously, but write to the left half of \(A \), e.g. \(\text{addL} \) writes to \(A[-L-1] \). The query operations can be implemented using \(A, R \), and \(L \): the operation \(\text{size()} \) returns \(R + L \) and \(\text{get}(i) \) returns \(A[i-L] \).

To implement a fully retroactive version of this data structure, rather than maintaining this array explicitly we maintain a balanced binary search tree where the leaves are the update operations \(\text{addR}, \text{addL}, \text{remR}, \text{remL} \) ordered by time. For each leaf node we associate numbers \(U_R \) and \(L_R \) such that \(U_R = 1 \) for \(\text{addR} \), \(U_R = -1 \) for \(\text{remR} \), \(U_L = 1 \) for \(\text{addL} \), and \(U_L = -1 \) for \(\text{remL} \). The numbers \(U_R \) and \(L_R \) are zero for all other nodes.

The value of \(L \) at time \(t \) is the sum of all \(U_L \) values for update operations that occurred at time \(t < t \) and \(R \) is the sum of all \(U_R \) values for update operations that occurred at time \(t < t \). The value of \(A[j] \) at time \(t \) is simply the result one of the two last update operations when \(-L - 1 = R + 1 \) was \(j \).

Therefore, it suffices to be able to compute the value of \(L \) and \(R \) at every time \(t \) and to find the last update operation when \(L \) or \(R \) was some specified value. For this purpose, we augment each node in the balanced binary search tree with six values, the sum of the \(U_L \) and \(U_R \) values in its subtree and the nodes with the smallest and largest \(L \) and \(R \) values in its subtree. We maintain these values in \(O(\log m) \) time for each \textbf{Insert} or \textbf{Delete} by updating the modified nodes’ ancestors.

- **Insert** \((t, \text{update}(x))\) where update \(\in \{\text{addL}(x), \text{addR}(x), \text{remL}, \text{remR}\} \): Insert a new leaf node into the binary search tree with the appropriate \(U_L \) and \(U_R \) values, updating the auxiliary information as needed.
- **Delete** \((t, \text{update}(x))\) where update \(\in \{\text{addL}(x), \text{addR}(x), \text{remL}, \text{remR}\} \): Delete the corresponding leaf node from the binary search tree, updating the auxiliary information as needed.
- **Query** \((t, \text{size})\): Find the leaf node corresponding to the last update performed before time \(t \). Compute \(L \) and \(R \) for \(t \) by adding the subtree sums of \(U_L \) and \(U_R \) of the left children of the ancestors of this node. Return \(R + L \).
- **Query** \((t, \text{get}(i))\): Compute the values of \(L \) and \(R \) as in the previous bullet and check that \(i < R + L \). Next we compute the value of \(A[j] \) for \(j = i - L \). To do this we find the leaf node corresponding to the last update operation that occurred before time \(t \). We then perform two walks up and down the tree to find the last update operations that occurred before time \(t \) when \(-L - 1 = j \) or \(R + 1 = j \). At least one of these operations must be a \(\text{addL} \) or a \(\text{addR} \) and we return the one that was performed last.

Using a balanced binary search tree all these operations can be performed in \(O(\log m) \) time.

References

\(^1\)Note that few small tweaks are required to adjust indices by 1 to account for the unused 0th array index.