Today: Dynamic Optimality II (of 2)
- lower bounds:
 - independent rectangles
 - Wilber 1 & 2
 - signed greedy
- Tango trees: $O(\log \log n)$-competitive

Recall:
- point set is a valid BST execution
 \Leftrightarrow arborally satisfied set:
 rectangle spanned by two points
 not on a horizontal/vertical line
 contains another point
- Greedy algorithm conjectured $O(\text{optimal})$
- can be simulated online
Lower bounds: [Demaine, Harmon, Iacono, Kane, Patrascu]

Independent rectangles are unsatisfied & \(\Rightarrow \) input point set (accesses) no corner is strictly inside another

![Dependent and independent rectangles]

Theorem: \(\text{OPT} \geq |\text{input}| + \frac{1}{3} \max \# \text{ independent rectangles} \)

Signed rectangles: \(\square \) & \(\square \) types
- \(\square \)-satisfied if all \(\square \) rectangles have another pt.
- \(\text{OPT}_{\square} \) = smallest \(\square \)-satisfied superset of points

Lemma: \(\text{OPT}_{\square} \geq |\text{input}| + \max \# \text{ independent } \square \text{-rectangles} \)

Proof:
1. find rectangle in indep. set \\& vertical line hitting just it \\
 \(\Rightarrow \) segment with endpoints on top & bottom edges of rectangle
2. find horizontally adjacent pts. of \(\text{OPT}_{\square} \) in rect. crossing line
3. charge indep. rectangle to those points
Assume input x & y coords. all distinct

1: take the widest rectangle

- sharing-a rects. left of sharing-b's (indep)
- sharing-neithers fit in between vertical edges
 => room left for vertical line

2: take p = topmost rightmost point in rectangle & left of line (e.g. a)

q = bottommost leftmost point in rectangle & right of line & not below p (e.g. b)

3: p & q are not in any other common rectangle
 => pair won't get charged again
 - in any horizontal chain of charges
 <= 1 in input (by distinct y's)
 => added > # indep. rectangles
Wilber's second lower bound:
- given input (access) point set
- for each point \(p \):
 - look at orthogonally visible points below \(p \)
 - count # alternations between left/right of \(p \)
- sum over all \(p \)

Proof: independent rectangle \(\forall \) alternation:

Conjecture: \(\text{OPT} = \Theta(\text{Wilber}^2) \)

Key-independent optimality: [Iacono - ISAAC 2002]
- suppose key values are "meaningless"
 - might as well permute them uniformly at random
- claim: \(E[\text{OPT}] = \text{working-set bound} \)
 - splay trees are key-indep. optimal
- proof sketch: \(E[\text{Wilber}^2(x_i)] = \Theta(\lg t_i) \)
 (expected # changes to max. in random permutation)
Wilber's first lower bound: [Wilber - SICOMP 1989]
- fix a lower-bound tree \(P \) on same keys
 (e.g. perfect binary tree)
- for each node \(y \) of \(P \):
 count # alternations in \(x_1, x_2, \ldots, x_n \)
 between accesses in left & right subtrees of \(y \)
 (ignoring accesses to \(y \) or outside \(y \)'s subtree)
- sum over all \(y \)

Proof: independent rectangle alternation

Example: bit-reversal sequence

<table>
<thead>
<tr>
<th>000</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

\(\Rightarrow \) # alternations at \(y = \) size of \(y \)'s subtree
\(\Rightarrow \) Wilber 1 = \(\Theta(n \log n) \)
\(\Rightarrow \) OPT = \(\Theta(n \log n) \)

[OPEN]: Any access sequence \(\exists \) tree \(P \) such that
OPT = \(\Theta(\text{Wilber 1}) \)
Tango trees: \cite{DemaineHarmonIaconaPatrascu2007}
- \(O(\lg \lg n)\)-competitive online BST
- \(P\) = perfect BST on \(n\) keys
 - define preferred child of node \(y\) in \(P\) to be
 - left if accessed left subtree of \(y\) more recently
 - right if accessed right subtree of \(y\) more recently
 - none if no access to either subtree yet
 - preferred path = chain of preferred child pointers
 - partition of nodes of \(P\)
- idea: store each preferred path in auxiliary tree
 - conceptually separate balanced BST (e.g. AVL)
 - leaves link to roots of aux. trees of children paths
 - has \(\leq \lg n\) nodes (height of perfect \(P\))
 - supports search in \(O(\lg \lg n)\) time
- search starts at top aux. tree (containing root of \(P\))
 - each jump to next aux. tree = nonpreferred edge
 - preferred edge change = \(+1\) in Wilber 1
 - \(k\) jumps \(\Rightarrow UB\ k\), \(UB\ (k+1)\cdot O(\lg \lg n)\)
 - \(O(\lg \lg n)\)-competitive... if we can update preferred edges OK
Auxiliary trees:
- changing a preferred child = cutting one path & joining two paths:
 - if aux. trees were sorted by depth, this would be like split & concatenate
 - depth >d translates to interval of keys
 \[\Rightarrow \text{can implement cuts & joins with } O(1) \text{ splits & concatenates} \]
 - each costs \(O(lg (\text{aux. tree})) = O(lg \lg n) \)

In one tree: mark roots of aux. trees
- modify split & concat. to ignore children trees & manipulate adjacent trees:
Signed Greedy:
- sweep as in Greedy
- only satisfy \(\square \) boxes
- for every added point, get independent \(\square \)-rectangle
\[\Rightarrow \text{get lower bound: } \square \text{-Greedy} \]

Theorem: \[
\max \{ \square \text{-Greedy}, \square \text{-Greedy} \} = \Theta(\text{biggest independent-rectangle LB})
\]

Proof: define \(\text{OPT}_{\square} = \text{smallest union of } \square \text{-satisfying superset} \cup \square \text{-satisfying superset} \)

\[
\text{OPT} \geq \text{OPT}_{\square} \\
\geq |\text{input}| + \frac{1}{2} \max \{ \text{independent rectangles} \} \\
\geq \frac{1}{2} \max \{ \square \text{-Greedy}, \square \text{-Greedy} \} \\
\geq \frac{1}{2} \max \{ \text{OPT}_{\square} \cup \text{OPT}_{\square} \} \\
\geq \frac{1}{4} (\text{OPT}_{\square} + \text{OPT}_{\square}) \\
\geq \frac{1}{4} \text{OPT}_{\square} \\
\Rightarrow \text{constant-factor sandwich} \]

Summary: so close!

PROJECT: compare UBs & LBs for many pt. sets