Today: More integers
- predecessor lower bound review
- signature/packed sorting review
 ~ mergesort
- packed quicksort

Predecessor LB: \(\min \{ \log_a w, \log_b n^3 \} \)

 Alice's msg. = \(\log(\text{space}) \)
 \(w = \text{Bob's msg.} \)

- warning: lower bounds are hard!
- idea: construct tough instance (distribution)

1. split words into \(k \) chunks, make data identical in chunks \(< i \)
 \(\Rightarrow \) predecessor determined by chunk \(i \)
 but query (Alice) doesn't know \(i \)
 & make chunk \(i \) bad via \(\odot \), \(w' = w/k \)

2. split \(n \) items into \(k' \) chunks, make \(i \)th chunk items start \(\text{bin}(i) \)
 \(\Rightarrow \) which subproblem determined by \(i = \text{lead} \)
 \(lg k \) bits of query (not known to DS/Bob)
 & make chunk \(i \) bad via \(\odot \), \(n' = n/k' \)
 \(w' = w - lg k' \)
Round elimination argument:
- consider t-round communication for $\mathbb{1}$
- Alice's first message has $\approx \frac{a}{k}$ useful bits
 - Bob can guess them with prob. $\frac{1}{2^{a/k}}$
 - error prob. $1 - \frac{1}{2^{a/k}} \approx \frac{a}{k}$... actually $\sqrt{a/k}$
- left with Bob-first comm. for $\mathbb{2}$
- eliminate Bob's message, error prob. $+\sqrt{b/k}$
- left with Alice-first comm. for $\mathbb{1}$
- after t such round eliminations,
 - left with 0-message protocol for $\mathbb{1}$

\Rightarrow error prob. must be $\geq \frac{1}{2}$
 if $n' \geq a$ & $w' \geq 1$ (non-trivial instance)
 i.e. $t \leq \min \{ \log_k w, \log_k n^2 \}$
- set $k = a t^2$ & $k' = b t^2$

\Rightarrow if $t \leq \min \{ \log_{a t^2} w, \log_{b t^2} n^2 \}$
 $t = O(\lg n)$ & $a \geq \lg n^2 = O(a^3)$
 $b t^2 = O(b^3)$ \(\Rightarrow\) $t = O(\lg w) = O(\lg b)$

then error $= t \left(\frac{\sqrt{a/k'}}{t} + \frac{\sqrt{b/k'}}{t} \right)$
 $= t \left(\frac{1}{t} + \frac{1}{t} \right)$
 $= \frac{1}{3}$ with appropriate constants
 $\geq \frac{1}{2} \text{ CONTRADICT} \blacksquare$
Packed sorting: n b-bit ints. with $w = \Omega(b \log n \log \log n)$

= mergesort with ints. packed in n/k words

$\Rightarrow T(n) = 2T(n/2) + O(n \cdot \log k)$

= $O(n \cdot \log k \cdot \log n)$

= $O(n)$

- merge via bitonic sorting + bit tricks

Signature sort: $O(n)$ time for $w \geq \log^{2+\varepsilon} n \cdot \log \log n$

- break integers into $\log^{\varepsilon} n$ chunks of $\log^2 n \cdot \log \log n$

- hash each chunk to $\log n$ bits

$\Rightarrow \log^{1+\varepsilon} n$-bit signature for each integer

- sort them via packed sorting

- fix chunk order of each node in trie by recursively sorting (node, chunk, edge index)

\Rightarrow get correct permutation on edges

$\Rightarrow b' = b / \log^{\varepsilon} n + O(\log n)$

\Rightarrow after $1/\varepsilon$ recursions, $b' = O(w / \log^{1+\varepsilon} n)$

= $O(w / \log n \log \log n)$

\Rightarrow can use packed sorting to finish
Problem: Packed quicksort \(w = \Omega(b \log h \log n) \)

- quick sort with ints, packed in \(n/k \) words
- choose partition element \(x \) (e.g., random)
- partition array into \(\leq x \) & \(> x \)
- recursively sort
- concatenate

1. partition 1 word with \(k \) elements:

\[
\emptyset \ a_1 \ \emptyset \ a_2 \ \emptyset \ \emptyset \ \emptyset \ \emptyset \ a_k
\]

into 2 words storing elts. \(\leq x \) & \(> x \)

in \(O(1) \) time on word RAM

2. given 2 words with \(j_1, j_2 \leq k/4 \) elts. spread out:

\[
\emptyset \ \emptyset \ \widehat{1} \ a_1 \ \; \emptyset \ \emptyset \ a_2 \ \emptyset \ \emptyset \ \widehat{1} \ a_3 \ \emptyset \ \emptyset
\]

combine into 1 word with all \(j_1 + j_2 \) elts.

in \(O(\log k) \) expected time on word RAM

2'. given 1 word with \(j \leq k \) elements spread out:

\[
\emptyset \ \emptyset \ \widehat{1} \ a_1 \ ; \emptyset \ a_2 \ \emptyset \ \emptyset \ \widehat{1} \ a_3 \ \emptyset \ \emptyset
\]

compactify to right so that

\[\geq \text{constant fraction density} \]

in \(\rho \approx \log k \) time?

3. partition \(O(\frac{n}{k}) \) words each with \(\Theta(k) \) elts.

\[\leq x \]

& \(O(\frac{n}{k}) \) words each with \(\Theta(k) \) elts. \(> x \)

in \(O(\frac{n}{k} \log k) \) expected time on word RAM