Partial & full persistence: review

Example: AVL tree + partial persistence
\(p = 1 \) (no parent pointers)
\[\Rightarrow \leq 2 \text{ mods./node} \]

v0:

v1: insert 9

v2&3: update heights

v4&5&6: rotate
v6': overflow 7

v6'': update pointers

v7: update heights

v7': overflow 5 & update pointers
Node splitting: full persistence
- overflowing node represents various versions
- look at linearized versions
- split represented versions in half linearly
- second half is closed under descendants \(\Rightarrow \) put in new node

(Can't split out single subtree of \(\frac{1}{2} \) or \(\frac{1}{3} \) the size)
Potential analysis: full persistence
- \(\leq 2(d+p+1) \) mods. per node
 - out-degree in-degree
- potential \(\Phi = c \cdot \sum_{\text{node}} (d+p+1) - \min \{d+p+1, \# \text{empty mod. slots}\} \)
 - \(= \sum_{\text{node}} \# \text{used mods. in second half of node} \)
- each update \(i \) has:
 - actual cost \(t_i = c \cdot (1 + \# \text{overflows}) \)
 - orig. field node splits
 - potential change \(\Delta \Phi_i = \Phi_i - \Phi_{i-1} \)
 - \(= -c \cdot \# \text{overflows} \cdot \# \text{emptied 2\text{-}nd half slots} \)
 - \(d+p+1 \)
 - \(+ c \cdot \# \text{overflows} \cdot \# \text{pointers to "both" nodes} \)
- no \(1+ \) for mod causing split, which turns into a \(d \) pointer
- key: pointers in \(d+p+1 \) mods (of both nodes) have reverse pointers that can be updated directly to just one of the nodes
 - amortized cost \(a_i = t_i + \Delta \Phi_i \)
 - \(= c(1+o) - c \cdot o \cdot (d+p+1) + c \cdot o \cdot (d+p) \)
 - \(= c = O(1) \)
- care about total cost \(\Sigma t_i \) \(\rightarrow \) telescoping sum
 - know \(0 = \Sigma a_i = \Sigma (t_i + \Delta \Phi_i) = \Sigma t_i + \Phi_m - \Phi_0 \)
 - \(\Rightarrow \Sigma t_i = \Phi_0 - \Phi_m \leq \# \text{initial nodes} \cdot (d+p+1) \)
 - \(\leq 0 \)
⇒ \(O(1) \) amortized cost per update
Partially retroactive priority queue: review

- ordered by key: \(Q_{\text{now}} \) as balanced BST
- ordered by time:
 - BBST where leaves = updates \((\text{insert}+\text{delete})\)
 - leaf stores \(\emptyset \) for insert\((k)\) where \(k \in Q_{\text{now}} \)
 - \(+1 \) for insert\((k)\) where \(k \notin Q_{\text{now}} \)
 - \(-1 \) for delete-min

\(\Rightarrow \) prefix sum \(\emptyset \) means all to-be-deleted items have been deleted \(\equiv \text{BRIDGE} \)

- each node stores subtree sum & min & max prefix sum within subtree

\(\Rightarrow \) can find bridge preceding given leaf \(x \):
 - compute prefix sum for \(x \):
 - \(\leq \) left subtrees of path to root
 - look for subtree whose prefix sum range hits \(\emptyset \) when adding previous \(\Delta s \)
 - walk down \(\Rightarrow \) & Delete\((t, \text{"delete-min"})\)

- Insert\((t, \text{"insert}(k)\text{"") inserts into \(Q_{\text{now}} \)
 - max key deleted after \(t \) (or \(k \) if larger)
 = max key \& \(Q_{\text{now}} \) inserted after last bridge

\(\Rightarrow \) store in each node the max key \& \(Q_{\text{now}} \) inserted in the subtree \(\Rightarrow \) & Insert\((t, \text{"delete-min"})\)

- Delete\((t, \text{"insert}(k)\text{"") deletes from \(Q_{\text{now}} \)
 - min key \(\in Q_{\text{now}} \) inserted before next bridge \(> t \)

\(\Rightarrow \) successor bridge + min insert augmentation
Problem: transform any partially retroactive DS
- retro. updates in $O(m)$
- present queries in $O(n)$
into a fully retroactive DS with $O(\sqrt{m})$ overhead:
- retro. updates in $O(\sqrt{m} \cdot U(m))$
- retro. queries in $O(\sqrt{m} \cdot U(m) + O(n_t))$