Technical overview:

Themes:
- models of computation: matter!
- fancy data structures: cool!
- tight lower bounds: hard!

Temporal DS: manipulate time (time travel)
- persistence: fixed past
 - motivation: undo, geometry (time-space)
- partial: linear time, query past
 - full: branching time \Rightarrow tree \Rightarrow generally possible with $O(1)$ overhead
- confluent: can merge timelines \Rightarrow DAG
- lots of results & open problems e.g. confluent files & directories solved in 851!
- retroactivity: change the past
 - motivation: mistake correction, geometry
 - hard in general
Geometric DS: points in \(d \geq 1 \) dimensions
- motivation: relational databases
- can preprocess \(n \) points in 3D to find all points in query box in \(O(l \log n) \) time
- kinetic DS: moving points

Dynamic optimality: is there one best BST?
- \(O(1) \)-competitive against any BST?
- any balanced BST is \(O(l \log n) \)-competet.
- Tango Trees are \(O(l \log \log n) \)-competitive
- conjecture: Greedy is \(O(1) \)-competitive

Memory hierarchy:
- when you load 1 word of data, get \(B \) for same cost
- goal: amortize high cost over \(B \) items
- scanning \(N \) items costs \(\Theta(l \sqrt{N/B}) \)
- sorting \(N \) items costs \(\Theta(N/B \log y/B) \)
 e.g., \(\frac{N}{B} \)-way merge sort & priority queue in \(\Theta(\frac{1}{B} \log y/B \frac{N}{B}) < 1! \)
- can do all this without even knowing \(B \) & \(M \)!
 "cache oblivious"
 \(\Rightarrow \) works well on multilevel hierarchy too
Integer DS: words store ints $c \in \{0, 1, \ldots, u-1\}$

$\rightarrow w$ bits $\Rightarrow u = 2^w$

- hashing is one example:
 - $O(1)$ time w.h.p. insert/delete/search
- insert/delete/predecessor/successor (like BSTs): for $O(n \text{ polylog } n)$ space,
 - $\Theta(\min \{\log w n, \frac{\log w}{\log \log n}\}) \leq O(\sqrt{\log n})$
- sorting in $O(n)$ time / $O(1)$ priority queue
 - for $w = O(\log n) \& w = \Omega(\log^{a+3} n)$
 - radix sort

String DS: preprocess text T to search for substring P in $O(|P|) \triangleleft \text{indep. of } T!$

- find longest common prefix of 2 (preprocessed) strings in $O(1)$ time

Succinct DS: above in $O(|T|)$ bits, not words

- store n parentheses in $n + o(n)$ bits
 & find matching/parent parentheses in $O(1)$ time

Dynamic graphs: insert/delete edges & query: are v & w connected via path?
- $O(\log n)$ for trees (solved in 85!)
- $O(\log n \cdot (\log \log n)^3)$ for undirected graphs
- we'll see $O(\log^2 n)$
Class format:
- video lectures from 2012
- completion & feedback form
 \textit{DUE TUESDAYS AT NOON}
- Piazza for raising questions
- class (W2:30-5) for every 2 lectures
- Q&A (based on form/Piazza feedback)
- group puzzle solving
 - build collaboration skills, warmup for:
 - attack open problems
 - build research skills, thrill of unknown, fun & challenge of advancing frontiers of research
- weekly psets: 1 page in, 1 page out
 \textit{USUALLY DUE MONDAYS AT NOON}
- final project: written & presented
 - pose and/or try to solve open problem
 (e.g. from open problem session)
 - implement & experiment with DS
 - survey a few papers (not well-covered)
 - improve Wikipedia

\textbf{Proposal DUE APRIL 9, 2014}

Problems: groups of 5-10 people
- don't worry about solving ~ about journey
- solved problems: write progress in Piazza
 - private note ~ we'll post answers for record
- when done/bored, move on to open problem
Problem 1: insert/delete/successor/pred. in $O(\log n)$
+ insert-after/before in $O(1)$ amortized
 \implies given node x, e.g. found by pred./succ.
 insert $y = x \pm \varepsilon$

[+ delete-here in $O(1)$ amortized]
 \implies given node x, delete it

interesting with or without this

Problem 2: insert/delete/pred./successor in $O(\log n)$
[+ split in $O(\log n)$]
 \implies given DS & key x, split DS into
 DS of all items $\leq x$ & DS of all items $> x$

[+ concatenate in $O(\log n)$]
 \implies given 2 DSs A & B such that
 $a < b$ for all $a \in A$ & $b \in B$,
 combine into 1 DS of all items in $A \cup B$

either op. is interesting

Open problem: given n points P in 2D, no 2 on common row [or column],
find minimum point set $Q \subseteq P$ such that:
for any 2 points $\in Q$ not on common row/col.,
the rectangle they span contains another point $\in Q$

- NP-hard?
- $O(1)$-approximation?