
6.851: Advanced Data Structures Spring 2012

Lecture 13 — April 5, 2012

Prof. Erik Demaine Scribes: Karan Sagar (2012), Jacob Hurwitz (2012),

Jingjing Liu (2010), Meshkat Farrokhzadi (2007), Yoyo Zhou (2005)

1 Overview

In the last two lectures, we discussed several data structures for solving predecessor and succes-
sor queries in the word RAM model: van Emde Boas trees, y-fast trees, and fusion trees. This
establishes an upper bound on the predecessor problem.

In this lecture we discuss lower bounds on the cell-probe complexity of the static predecessor
problem with constrained space. In particular, if we are constrained to polynomial space, then we
obtain a lower bound of

Ω
(

min

{
lgw

lg lg n
, logw n

})
using the round elimination technique in a communication model. This shows that the minimum
of van Emde Boas trees and fusion trees solves the static predecessor problem optimally, up to a
lg lg factor.

The lower bound is particularly elegant because it only relies only on information theory. On the
other hand, the upper bounds we’ve seen have relied on the computer technology available, since
they use specific bit manipulations and C-style operations.

2 Survey of predecessor lower bound results

2.1 The problem

Given a data structure (a set S of n w-bit integers) and a query (an element x, possibly not in S),
the goal is to find the predecessor of x in S as efficiently as possible. Observe that with O(2w) space
we can precompute and store all the results to achieve constant query time; to avoid trivializing
the problem, we assume O(nO(1)) space for our data structures.

The results we are about to discuss are actually for an easier problem, colored predecessor. In
colored predecessor, each element of S is colored red or blue, and the goal is to return the color of
the predecessor of x in S. Since we can solve the colored predecessor problem using a solution to
the predecessor problem, this gives a stronger lower bound for our original problem.

2.2 Results

• Ajtai [Ajt88] proved the first ω(1) (that is, superconstant) lower bound, claiming that ∀w,∃n
that gives Ω(

√
lgw) query time.

1

• Miltersen [Mil94] rephrased the same proof ideas in terms of communication complexity and
then showed that ∀w, ∃n that gives Ω(

√
lgw) query time, and ∀n, ∃w that gives Ω(3

√
lg n)

query time.

• Miltersen, Nisan, Safra, and Widgerson [MNSW95, MNSW98] introduced the round elimina-
tion technique and used it to give a clean proof of the same lower bound.

• Beame and Fich [BF99, BF02] proved two strong bounds. They showed that ∀w,∃n that

gives Ω
(

lgw
lg lgw

)
query time, and ∀n,∃w that gives Ω

(√
lgn

lg lgn

)
query time. They also gave

a static data structure achieving O
(

min
{

lgw
lg lgw ,

√
lgn

lg lgn

})
, which shows that these bounds

are optimal if we insist on pure bounds (bounds dependent only on n or only on w).

• Xiao [Xia92] independently proved the same lower bound as Beame and Fich.

• Sen and Venkatesh [Sen03, SV08] gave a stronger version of the round elimination lemma
that we about to introduce in this lecture, which gives a cleaner proof of the same bounds.

• Patrascu and Thorup [PT06, PT07] gave a tight trade-off between n, w, and space for the
static problem. Letting the space be n · 2a, they found a lower bound of

Θ

min
logw n, lg

(
w − lg n

a

)
,

lg w
a

lg
(

a
lgn lg w

a

) , lg w
a

lg
(

lg w
a / lg lgn

a

)

 .

The first term looks like fusion trees, the second like van Emde Boas, and the other two terms
don’t have good intuition but show that we can do a little better for certain space values.

GivenO(n polylg n) space, we have a = O(lg lg n), implying a bound of Θ

(
min

{
logw n,

lgw

lg lgw
lg lgn

})
.

This shows that van Emde Boas trees are optimal if w = O(polylg n), and fusion trees are
optimal if lgw = Ω(

√
lg n lg lgn).

3 Communication Complexity

3.1 Communication complexity view point

We consider the problem in the communication complexity model. In this model, Alice knows a
value x and Bob knows a value y. Collectively, they would like to compute some function f(x, y).
However, they are limited to a protocol in which they alternate sending messages to each other;
furthermore, Alice’s messages can only be a bits long, and Bob’s messages can only be b bits long.

Applying this model to the colored predecessor problem, we can think of Alice as the query algo-
rithm, and she knows the query x. Bob is the memory/RAM, and he knows the data structure y.
Together, they want to find f(x, y), which is the answer to the colored predecessor query. Intu-
itively Alice wants to “ask” Bob for values from the data structure so she can compute the answer.
Thus, Alice’s messages will be address bits, so a = O(lg(space)). Bob will return the values stored
in the data structure, so b = w, the word size. Each “round” of communication consists of two
messages and corresponds to one probe in the cell probe model. (This is a static problem, so we
only have cell probe loads, not writes.) Thus, the number of messages equals twice the number

2

of cell probes. If we can establish a lower bound in the cell probe model, that will imply a lower
bound in the word RAM model.

3.2 Predecessor lower bound

Claim: The number of messages (and therefore number of cell probes) needed in the communi-
cation model is Ω(min{lgaw, lgb n}).

Corollary: This implies the Beame-Fich-Xiao lower bound of Ω
(

min
{

lgw
lg lgw ,

√
lgn

lg lgn

})
.

Assuming polynomial space, a = Θ(lg n). The lower bound is largest when logaw
Θ
= logb n, where

Θ
= denotes equality up to a constant factor. Solving, we find:

lgw

lg lgn

Θ
=

lg n

lgw
⇔ lgw

Θ
=
√

lg n lg lg n⇔ lg lgw
Θ
= lg lg n

Using this equivalence, we now rewrite Ω(min{lgaw, lgb n}) as

Ω

(
min

{
lgw

lg a
,

lg n

lgw

})
= Ω

(
min

{
lgw

lg lgn
,

lg n√
lg n lg lgn

})
= Ω

(
min

{
lgw

lg lgw
,

√
lg n

lg lgn

})
.

This representation makes it easiest to see the Beame-Fich-Xiao lower bound. However, using some
of the intermediate steps in the above calculation, we can also rewrite the bound as

Ω
(

min

{
lgw

lg lgn
, logw n

})
,

which is the format we presented in the overview at the beginning of lecture. This representation
makes it easy to see that the first argument to the min function looks (up to a lg lg factor) like van
Emde Boas complexity, and the second argument looks like fusion tree complexity.

4 Round Elimination

Let’s return to the abstract communication model (not necessarily related to the predecessor prob-
lem) to discuss round elimination. Round elimination gives some conditions under which the first
round of communication can be eliminated. To do this, we consider the “k-fold” of an arbitrary
function f :

Definition 1. Let f (k) be a variation on f , in which Alice has the k inputs x1, . . . , xk, and Bob
has inputs: y, i ∈ 1, . . . k, and x1, . . . , xi−1 (note that this overlaps with Alice’s inputs). The goal
is to compute f(xi, y).

Now assume Alice must send the first message. Observe that she must send this message even
though she doesn’t know i yet. Intuitively, if a� k, she is unlikely to send anything useful about
xi, which is the only part of her input that matters. Thus, we can treat the communication protocol
as starting from the second message.

3

Lemma 2 (Round Elimination Lemma). Assume there is a protocol for f (k) where Alice speaks
first that uses m messages and has error probability δ. Then there is a protocol for f where Bob
speaks first that uses m− 1 messages and has error probability δ +O(

√
a/k).

Intuition: If i were chosen uniformly at random (which is the worst case), then in Alice’s first
message the expected number of bits “about xi” is a/k. Bob can guess these bits at random; the
probability of guessing all bits correctly is 1/2a/k, so the probability of failure is 1−2−a/k. Because
we are interested in small a/k, a series expansion shows that 1−2−a/k ≈ a/k. Thus, by eliminating
Alice’s message, the error probability should increase by about a/k. In reality, this intuition is not
entirely correct, and we can only bound the increase in the error by

√
a/k, which is often acceptable

depending on the application.

5 Proof of Predecessor Bound

Proof sketch: Let t be the number of cell probes, or equivalently, the number of rounds of
communication. Our goal is to apply the Round Elimination Lemma 2t times to eliminate all the
messages. At this point, the color of the predecessor must be guessed (assuming n′ ≥ 2, which we’ll
define soon), and so the probability of success is at most 1

2 .

If we can bound the increase in error probability by at most 1/6t at each step, then 2t applications
of the Round Elimination Lemma will increase the error probability from 0 to at most 1

3 . However,
this yields a probability of success of at least 2

3 , which is a contradiction.

In other words, no algorithm with t cell probes can solve this problem, so t is a lower bound on
the expected performance of any static randomized colored predecessor data structure.

5.1 Eliminating Alice→Bob

Alice’s input has w′ bits (initially, w′ = w). Divide it into k = Θ(at2) equal-size chunks x1, . . . , xk.
Each chunk is of w′/k bits. If we can bound the error increase by O(1/t), then tweaking the
constants will give 1/6t as desired.

We construct a tree with branching factor 2w
′/k on the w′-bit strings corresponding to the Alice’s

possible inputs, which are the elements of the data structure. The tree then has height k. In
the worst case, we can constrain the n′ (initially, n′ = n) elements to all differ in ith chunk.
Alice and Bob know the structure of the inputs, so Bob knows i and the common prefix of all
elements x1, . . . , xi−1. Thus, when Alice’s message is eliminated, the goal changes to query xi in
data structure for ith chunk, and w′ is reduced to w′/k = Θ(w′/at2).

An analogy of this data structure is van Emde Boas tree since vEB binary searches on levels to
find longest prefix match, reducing w′ as it goes. Using the lemma, the error probability increases
by O(

√
a/at2) = O(1/t), which is exactly what we can afford per elimination.

4

5.2 Eliminating Bob→Alice

Now that Alice’s message is eliminated, Bob is speaking first, so he doesn’t know the query’s value.
Bob’s input is n′ integers each of size w′ bits. Divide the integers into k = Θ(bt2) equal chunks of
n′/k integers each. Remember that fusion trees could recurse in a set of size n/w1/5 after O(1) cell
probes. Here, we are proving that after one probe, you can only recurse into a set of size n/wO(1),
which gives the same bound for error increase, which is O(1/t).

To get lower bound, constrain input such that ith chunk xi starts with prefix i in binary. Alice’s
query starts with some random lg k bits, which decides which chunk is interesting. If Bob speaks
first, he cannot know which chunk is interesting,

So using the lemma, the elimination rises error probability by O(1/t); reduces n′ to n′/k = Θ(n′/bt2)
and w′ to w′− lg k = w′−Θ(lg bt2). As long as w′ does not get too small, w = Ω(lg(bt2)), this last
term is negligible (say, it reduces w′ by a factor of at most 2).

5.3 Stopping

Thus, each round of eliminations reduces n′ to Θ(n′/bt2) and w′ to Θ(w′/at2). Further, the prob-
ability of error at the end can be made to be at most 1

3 by choosing appropriate constants.

We stop the elimination when w′ = O(lg(bt2)) or n′ = 2. If these stop conditions are met, we have
proven our lower bound: there were many rounds initially, so we could do enough eliminations to
reduce n and w to these small values. Otherwise, we have a protocol which gives an answer with
zero messages, and the error probability is at most 1

3 , which is impossible. So we must be in the
first case (the stop conditions are met).

Hence, we have established a lower bound t = Ω(min{lgat2 w, lgbt2 n}). However, because t =
O(lg n) and a ≥ lg n, we have a ≤ at2 ≤ a3. Likewise, because t = O(lgw) and b = w, we have
b ≤ bt3 ≤ b3. Thus, we can conclude that t = Ω(min{lgaw, lgb n}).

6 Sketch of the Proof for the Round Elimination Lemma

We ran out of time to discuss this section in class, so it does not appear in the lecture video.

6.1 Some Information Theory Basics

Definition 3. H(x), called the entropy of x, is the number of bits needed on average to represent
a sample from a distribution of the random variable x. Formally,

H(x) =
∑
x0

Pr[x = x0] · lg 1

Pr[x = x0]

Definition 4. H(x | y) is the conditional entropy of x given y: the entropy of x, if y is known:

H(x | y) = Ey0 [H(x|y = y0)]

5

Definition 5. I(x : y) is the mutual or shared information between x and y:

I(x : y) = H(x) +H(y)−H((x, y)) = H(x)−H(x | y)

I(x : y | z) is defined in a manner similar to that of H(x | y).

6.2 The Round Elimination Lemma

Call Alice’s first message m = m(x1, . . . , xk). Next, we use a neat theorem from information theory
to rewrite entropy as a sum:

a = |m| ≥ H(m) =
k∑

i=1

I(xi : m | x1, . . . , xi−1)

If i is distributed uniformly in {1, . . . , k}, then Ei[I(x : m | x1, . . . , xk)] = H(m)
k ≤ a

k . This is why a
k

was an estimate for how many bits of information Bob could learn from the message about Alice’s
message. Note that we bounded I(xi : m | x1, . . . , xi−1), so even if Bob already knows x1, . . . , xi−1

and receives m, he still learns at most a
k bits about xi.

The prove the lemma, we must build a protocol for f given the assumed protocol for f (k). We can
build a protocol f(x, y) as follows:

1. Fix x1, . . . , xi−1 and i a priori (known to both players) at random.

2. Alice pretends xi = x.

3. Run the f (k) protocol, starting at the second message, by assuming the first message is
m = m(x1, . . . , xi−1, x̃i, . . . , x̃k), where x̃j is a random variable drawn from the distribution
of xj . Now the first message does not depend on xi = x (even xi is chosen randomly), so Bob
can generate it by himself, without any initial message from Alice.

4. Now Alice has some actual x, which she must use as xi, and almost certainly x̃i 6= x. But
we know that I(xi : m) is very small, so the message doesn’t really depend on xi in a crucial
way. This means that a random message was probably good: Alice can now fix xi+1, . . . , xk,
so that m(x1, . . . , xi−1, x̃i, . . . , x̃k) = m(x1, . . . , xi−1, x, . . . , xk), for the desired xi = x.

The last step is the crucial one which also introduces an error probability of O(
√
a/k). This

can be proved based on the “Average Encoding Theorem” from information theory. There also
exists a more subtle problem that this theorem solves: not only must xi+1, . . . , xk exist, so that a
Bob’s random guess for a message is made valid, but their distributions are close the the original
distributions, so the error probability δ does not increase too much.

References

[Ajt88] M. Ajtai: A lower bound for finding predecessors in Yao’s cell probe model, Combinatorica
8(3): 235–247, 1988.

6

[BF99] P. Beame, F. Fich: Optimal Bounds for the Predecessor Problem, Symposium on the Theory
of Computing 1999: 295–304.

[BF02] P. Beame, F. Fich: Optimal Bounds for the predecessor problem and related problems,
Journal of Computer and System Sciences 65(1): 38–72, 2002.

[Mil94] P. Miltersen: Lower bounds for union-split-find related problems on random access ma-
chines, Symposium on the Theory of Computing 1994: 625–634.

[MNSW95] P. Miltersen, N. Nisan, S. Safra, A. Wigderson: On data structures and asymmetric
communication complexity, Symposium on the Theory of Computing 1995: 103–111.

[MNSW98] P. Miltersen, N. Nisan, S. Safra, A. Wigderson: On data structures and asymmetric
communication complexity, Journal of Computer and System Sciences, 57(1): 37–49, 1998.

[PT06] M. Patrascu, M. Thorup: Time-space trade-offs for predecessor research, Symposium on
the Theory of Computing 2006: 232–240.

[PT07] M. Patrascu, M. Thorup: Randomization does not help searching predecessors, Symposium
on Discrete Algorithms 2007: 555–564.

[Sen03] P. Sen: Lower bounds for predecessor searching in the cell probe model, IEEE Conference
on Computational Complexity 2003: 73–83.

[SV08] P. Sen, S. Venkatesh: Lower bounds for predecessor searching in the cell probe model, Journal
of Computer and System Sciences 74(3): 364–385, 2008.

[Xia92] B. Xiao: New bounds in cell probe model, PhD thesis, University of California, San Diego,
1992.

7

