
6.851 Advanced Data Structures (Spring’12)

Prof. Erik Demaine TAs: Tom Morgan, Justin Zhang

Problem 1 Sample solution

Creationist successor data structure. The data structure is a balanced BST, such as an AVL
tree or red black tree, augmented with the following fields augmented to each node x:

• td : The time at which x is deleted

• tm : The maximal deletion time among x’s subtree

Operations. The three operations are done as following:

• Insert(−∞, “insert(k)”): The key k is inserted into the BST, with its deletion time set to
∞. We also set all its ancestors’ maximal deletion time to ∞. Rotations are done to balance
the tree. During rotation, the property that each note’s tm stores its subtree’s maximal
deletion time is preserved. This is easy because we only need to update the maximal deletion
times of the nodes being rotated. The insertion, the update for ancestors, and the rotations
each takes O(log n) time, where n is the number of elements in tree.

• Insert(t, “delete(k)”): The key k is deleted at time t. Locate k in the BST. Its deletion
time td should be greater than t. Change its deletion time td to t, and walk back to the root,
updating the maximal deletion time of all nodes on path. Both the locating and updating
takes O(log n) time.

• Delete(−∞, “insert(k)”): Delete the key k from the BST. We then update all of the maximal
deletion times of the ancestors of k. Both the deletion and the update take O(log n) time.

• Delete(t, “delete(k)”): Locate k in the BST. Increase its deletion time to ∞, and set it
and all of its ancestors’ maximal deletion times to ∞. Both the locating and updating take
O(log n) time.

• Query(t, “successor(k)”): We will essentially perform the standard successor search, except
that we will use the tm’s to only walk over the elements of the tree where the keys have not
been deleted. Specifically, we will start by finding key k’s successor k′ in the tree. If k′’s
deletion time is greater than t, then return k′, otherwise do the following. Walk up the tree,
until the first right subtree whose maximal deletion time is greater than t. Walk down that
subtree, avoiding all subtrees whose maximal deletion time is smaller or equal than t, and
find the smallest element (at time t). This is k’s successor at t. The walking up and down
takes O(log n) time.

Analysis of operation time. This data structure has O(log n) for all operations, where n is
the number of elements in tree. We have n ≤ m, where m is the total number of updates. Therefore
the data structure has operation time O(logm) (for all operations.)

1


