TODAY: Dynamic graphs III (of 3)
- dynamic connectivity lower bound:
 - block operations
 - bit-reversal bad access sequence
 - tree over time
 - sum lower bound
 - connectivity lower bound
Dynamic connectivity lower bound:

[Patrascu & Demaine - SICOMP 2006]
inserting/deleting edges & connectivity queries
require $\Omega(\lg n)$ cell probes/op.

even if connected components are paths
even amortized (but here prove for worst case)

\Rightarrow link-cut & Euler-tour trees are optimal

Proof:
- consider $\sqrt{n} \times \sqrt{n}$ grid with perfect matching between columns i & $i+1$ for each i,
forming permutation π_i
- block operations:
 - **update** (i, π): $\pi_i \leftarrow \pi$

 $\Rightarrow O(\sqrt{n})$ edge deletions & insertions
 - **verify-sum** (i, π): $\sum_{j=1}^{i} \pi_j = \pi$?

 compose
 $\Rightarrow O(\sqrt{n})$ connectivity queries
- **Claim**: \sqrt{n} updates + \sqrt{n} verify sums
 require $\Omega(\sqrt{n} \cdot \sqrt{n} \cdot \lg n)$ cell probes

$\Rightarrow \Omega(\lg n)/$op.
Bad access sequence:
- for i in bit-reversal sequence:
 - verify sum(\(i, \sum_{j=1}^{\frac{i}{2}} \pi_j\)) \(\Rightarrow\) answer = yes (but DS must check)
 - update \(i, \pi_{\text{random}}\) uniform random random permutation
- build tree over time:

- left & right subtrees of each node interleave

Claim: for every node \(v\) in tree, say with \(l\) leaves in its subtree, during right subtree of \(v\) (time interval) must do \(\Omega(l \sqrt{n})\) expected cell probes reading cells last written during left subtree

- sum lower bound over all nodes:
 - read \(r\) of write \(w\) only counted at \(\text{lca}(r, w)\)
 - linearity of expectation
 \(\Rightarrow\) \(\Omega(n \lg n)\) lower bound total (each leaf in \(\Theta(\lg n)\) subtrees)
Proof of claim:
- left subtree has \(l/2 \) updates with \(l/2 \) rand. perms.
- any encoding of these permutations must use \(\Omega(l \sqrt{n} \log n) \) bits \([\text{information/Kolmogorov theory}]\)
- if claim fails, find smaller encoding \(\Rightarrow \) contradict.
- setup: know the past (before \(v \)'s subtree)
- goal: encode (verified) sums in right subtree
 \(\Rightarrow \) can recover (updated) perms. in left subtree

\[
\begin{array}{ccccccc}
\pi_1 & \pi_2 & \pi_3 & \pi_4 & \pi_5 & \pi_6 & \pi_7 \\
\varnothing & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\[\pi_i = \pi_{i-1}^{-1} \circ \ldots \circ \pi_1^{-1} \circ \pi_j \circ \pi_{i+1}^{-1}\]

- farther left \(\Rightarrow \) known
- not yet updated

Warmup: query is \(\sum(i) \rightarrow \sum_{j=1}^{i} \pi_j \) \((\text{partial sums})\)
- let \(R = \{ \text{cells read during right subtree}\} \)
 \(W = \{ \text{cells written during left subtree}\} \)
- encode \(R \cap W \) (address \& contents of each cell)
 \(\Rightarrow |R \cap W| \cdot O(\log n) \) bits \([\text{assume poly. space}]\)
 \(\Rightarrow w = \Theta(\log n) \)

- decoding alg. for sums in right subtree:
 - simulate sum queries in right subtree
 - to read cell written in right subtree: easy
 - in left subtree: \(R \cap W \) in past: known

\(\Rightarrow |R \cap W| \cdot O(\log n) = \Omega(l \sqrt{n} \log n) \)
\(\Rightarrow |R \cap W| = \Omega(l \sqrt{n}) \)
\(\checkmark \)
Verify-sum instead of sum:
- permutations π given to verify-sum
- encode the information we want
- setup:
 - know (fixed) past
 - don’t know updates in left subtree
 - don’t know queries in right subtree
 - but know that queries return YES
- decoding idea:
 - simulate all possible input permutations
 - for each query in right subtree
 - know one returns YES, all others NO
- trouble: incorrect query simulation
 - reads cells \(R' \neq R \)
 - if read \(r \in R \setminus R' \), it must be incorrect
 - but can’t tell whether \(r \in W \setminus R \) or past \((R \cap W) \)
 - can’t afford to encode \(R \) or \(W \)
- idea: encode separator \(S \)
 - for \(R \setminus W \) & \(W \setminus R \)
- when decoding, to read cell written in right subtree: easy
 - in \(R \cap W \): encoded explicitly
 - in \(S \): must be in past \(\Rightarrow \) known
 - not in \(S \): must not be in \(R \) \(\Rightarrow \) incorrect; ABORT
- only one simulation returns YES; rest NO or ABORT
\[\Rightarrow \text{recover desired permutation} \]
\[|\text{encoding}| = \Omega(\sqrt{n} \cdot \log n) \]
Separators:
- given universe \(U \) & number \(m \)
- separator family \(\mathcal{S} \) for size-\(m \) sets if
 \(\forall A, B \subseteq U \) with \(|A|, |B| \leq m \) & \(A \cap B = \emptyset \):
 \(\exists C \in \mathcal{S} \) such that \(A \subseteq C \) & \(B \subseteq U \setminus C \)
- claim: \(\exists \) separator family \(\mathcal{S} \) with \(|S| \leq 20(m + \log \log |U|) \)
- proof sketch:
 - perfect hash family \(\mathcal{H} \) with \(|\mathcal{H}| \leq 20(m + \log \log |U|) \)
 [Hagerup & Thorup - STACS 2001]
 gives mapping from \(A \) & \(B \) to \(O(n) \)-size table
 - store \(A \) or \(B \) bit in each table entry
 - \(20m \) such vectors
 \(\Rightarrow 20m \cdot 20(m + \log \log |U|) = 20(m + \log \log |U|) \)

Encoding: \(R \cap W + \) separator of \(R \cap W \& W \setminus R \)
- size:
 \(|R \cap W| \cdot O(\log n) + O(|R| + |W| + \log \log n) \)
 \(= \Omega(\log n \cdot \log n) \)
 \(\Rightarrow |R \cap W| = \Omega(n \cdot \log n) \)
 or \(|R| + |W| = \Omega(\log n \cdot \log n) \)
 \(\Rightarrow \Omega(\log n) \) for op.
Update-query trade-off: (possible by same technique)
\[t_q \cdot \log \frac{t_u}{t_q} = \Omega(\log n) \quad \& \quad t_u \cdot \log \frac{t_q}{t_u} = \Omega(\log n) \]

- for \(t_u = \Omega(t_q) \), trees can match (small mods. to link-cut trees)
- for \(t_u = \Omega(\log n \ (\log \log n)^3) \), can match

[Thorup-STOC 2000]