Today: Strings
- tries & trays
- compressed tries
- suffix trees & arrays
- document retrieval
- linear-time construction

String matching: given text T & pattern P, find some/all occurrences of P in T as substrings

- one-shot: $O(T)$ time (Knuth, Morris, Pratt - 1977; Boyer & Moore - 1977; Karp & Rabin - IBM 1987)
- static DS: preprocess T, query $= P$
 - goal: $O(P)$ query $O(T)$ space

- other data structures consider when P has wildcards, or when P need not match as an exact substring (Hamming/edit distance)
 ~ see e.g. Cole, Gottlieb, Lewenstein - STOC 2004
 ~ Maas & Novak - CPM 2005
Warmup: predecessor among strings T_1, \ldots, T_k (e.g. library search)

Trie = rooted tree with child branches labeled with letters in Σ

- to represent strings as root-to-leaf paths in a trie, terminate them with a new letter $\$$. (otherwise can’t distinguish prefixes as absent or present)
 - e.g.:
 - $\{\text{ana}, \text{ann}, \text{anna}, \text{anne}\}$

- in-order traversal of leaves = sorted strings

Trie representation: $T = \# \text{ nodes in trie} \leq \sum_{i=1}^{k} |T_i|$

- node stores children:
 - as array
 - blank cells store predecessor/successor
 - as balanced BST
 - query space $O(P)$, $O(T\Sigma)$
 - as hash table
 - query space $O(P)$, $O(T)$
 - as van Emde Boas/y-fast
 - query space $O(P\lg\Sigma)$, $O(T)$

$(3.75) = (3) + (3.5)$ (only need VEB when fall off) $O(P + P\lg\Sigma)$, $O(T)$
[Farach-Colton — personal communication, 2012]:

4. Node stores children:
 - as weight-balanced BST
 - # descendant leaves in T
 - split children in left & right halves to optimally balance sum of weights
 - every 2 edges followed either advances P letter or reduces # candidate T strings to $2/3$
 - charge to $O(P)$ or $O(lg k)$

5. Leaf trimming (indirection)
 - cut below maximally deep nodes with $\geq |\Sigma|$ descendant leaves
 - # leaves in top trie $\leq |T|/|\Sigma|$
 - # branching top nodes $\leq |T|/|\Sigma|$
 - use 1 on branching top nodes & 1 on top leaves (to find right bottom trie) & 2 on rest of top (not branching in T)
 - $O(T)$ space on top
 - bottom trees have $< |\Sigma|$ descendant leaves
 - (4) achieves $O(P + lg |\Sigma|)$ query time

6. Suffix trays

[Cole, Kopelowitz, Lewenstein — ICALP 2006]
Application: sorting strings T_1, \ldots, T_k
- repeatedly insert into trie/tray
 $\Rightarrow O(T + k \log \Sigma)$
 - typically $O(T)$ $&$ $\ll O(T k \log k)$ via comparison

Compressed trie: contract nonbranching paths to single edge, keyed by first letter of path

e.g. $\{ \text{ana}, \text{ann}, \text{anna}, \text{anne} \}$

TRIE

COMPRESSED TRIE

- same representations apply, with $T =$ # compressed nodes
Suffix tree (trie):
- compressed trie of all $|T|$ suffixes $T[i:]$ of T (with $\$\$ appended)
 - e.g.: b a n a n a $\$$
 - $|T|+1$ leaves
 - edge label = substring $T[i:j]$
 - store as two indices (i, j)
 - $O(|T|)$ space

Applications:
- search for P gives subtree whose leaves correspond to all occurrences of P
 - $O(|P|)$ time via hash (+UEB) \Rightarrow leaves can still be sorted in T
 - $O(|P| \cdot \lg S_i)$ via trays \Rightarrow leaves sorted in T
- list first k occurrences in $O(k)$ more time
 - every node points to leftmost descend leaf
 - leaves connected via linked list
- # occurrences in $O(1)$ more time (Subtree sizes)

- longest repeated substring in T: $O(|T|)$ time
 - branching node of maximum "letter depth"
- longest substring match of $T[i:]$ vs. $T[j:]$: $O(1)$ via LCA query
- all occurrences of $T[i:j] = (1T1-j)\text{th level ancestor of leaf for } T[i:]$ for compression?
- store nodes in long path/ladder of L_{15} in van Emde Boas predecessor DS $\Rightarrow O(lg lg T)$
- can't afford lookup tables at the bottom...
- use ladder decomposition on bottom trees \Rightarrow jump to top of $O(lg lg n)$ ladders (to reach height $O(lg n)$)
- only need predecessor query on last ladder $\Rightarrow O(lg lg T)$ query & $O(T)$ space $[Abbott, Baran, Demaine,... - 6.897, Spr. 2005, L19.5]$

- multiple documents via multi. $T_1 \cdots T_k$ \Rightarrow count # distinct documents containing P
- store # distinct S_i's below each node
- longest common substring in $O(T)$ \Rightarrow branching node with ≥ 2 distinct S_i's below
- find d distinct documents containing P in $O(d)$ more "document retrieval problem" $[Muthukrishnan - SODA 2002]$
- each S_i stores leaf # of previous S_i
- in interval $[l,n]$ of leaves below a node, want first S_i, i.e. S_i storing $< l$, for each occ. i
- \Rightarrow find $m = \text{RMQ}(l,n)$ on array of stored values $[L15]$
- if stored value at leaf m is $< i$:
 - found desired S_i \Rightarrow output it
- recurse in intervals $[l,m-1]$ & $[m+1,n]$ $\Rightarrow O(1)$ time per output \Rightarrow (can stop anytime)
Suffix arrays: sort the suffixes of T just store the indices $\Rightarrow O(T)$ space

- e.g. $b\ a\ n\ a\ n\ a\$ | 6 $\$
 $\emptyset\ 1\ 2\ 3\ 4\ 5\ 6$

- searchable in $O(P\lg T)$ via binary search
- $lcp[i] =$ length of longest common prefix of ith & $(i+1)$th suffix in order
- when binary searching in interval $SA[i:j]$, only need to compare from letter $RMQ_{lcp}(i, j-1)$
- via RMQ of $L15$, $O(P + \lg T)$ search [2007, PS4]

Suffix trees \leftrightarrow suffix array:

- (\Rightarrow) via in-order traversal of leaves
- (\Leftarrow) via Cartesian tree of lcp array
 - put all mins at root (unlike $L15$)
 - non-leaf child subtrees: recurse
 - suffixes fit in between as leaves
 - lcp value forming a node = letter depth of that node
 \Rightarrow edge length = child lcp - parent lcp
 - can reconstruct labels
 - all doable in linear time [L15]
 - lcps computable in $O(T)$ from SA [Kasai et al. - cpm 2001] or directly in suffix-array construction below
Constructing suffix array (⇒ tree) in $O(T + \text{sort}(\Sigma))$
[Kärkkäinen & Sanders - ICALP 2003], inspired by
[Farach - FoCS 1997; Farach-Colton, Ferragina, Muthukrishnan - JACM]

1. Sort Σ - initially in $\text{sort}(\Sigma)$ time (or, if don't need children sorted, just number Σ arbitrarily)
 - later, radix sort in $O(T)$ time

2. replace each letter by its rank in $\Sigma \Rightarrow |\Sigma| \leq |T|$
3. form $T_0 = \langle (T[3i], T[3i+1], T[3i+2]) \rangle$ for $i = 0, 1, 2, \ldots$
 $T_1 = \langle (T[3i+1], T[3i+2], T[3i+3]) \rangle$ for $i = 0, 1, 2, \ldots$
 $T_2 = \langle (T[3i+2], T[3i+3], T[3i+4]) \rangle$ for $i = 0, 1, 2, \ldots$

 - single "letter"

⇒ suffixes(t) = $\bigcup_{i=0,1,2} \text{suffixes}(T_i)$
4. recurse on $\langle T_0, T_1 \rangle$ ⇒ $\frac{2}{3}|T|$ "letters"
 → sorted order & lcp of $\bigcup_{i=0,1} \text{suffixes}(T_i)$

5. radix sort suffixes (T_2) by writing
 $T_2[i:] = T[3i+2:] = \langle T[3i+2], T[3i+3:] \rangle \approx \langle T[3i+2], T_0[i+1:] \rangle$
 - also get lcp in suffixes(T_2): try to extend by 1

6. merge $\bigcup_{i=0,1} \text{Suffixes}(T_i)$ with suffixes(T_2) via:
 - $T_0[i:]$ vs. $T_2[j:] = T[3i:]$ vs. $T[3j+2:]$
 = $\langle T[3i], T[3i+1:] \rangle$ vs. $\langle T[3j+2], T[3j+3:] \rangle$
 - $T_1[i:]$ vs. $T_2[j:] = T[3i+1:]$ vs. $T[3j+2:]$
 = $\langle T[3i+1], T[3i+2], T[3i+3:] \rangle$ vs. $\langle T[3j+2], T[3j+3], T[3j+4:] \rangle$

⇒ also get lcp: try to extend by 1 or 2
$\Rightarrow T(n) = T(\frac{2}{3}n) + O(n) = O(n)$ (n = |T|)