Today: Integers & van Emde Boas
- models: word RAM & cell probe
- predecessor problem
- van Emde Boas DS
- y-fast trees

Models for integer data structures:
- word = w-bit integer \(\in \{0, 1, \ldots, w-1\} \)
 \(\leq 2^w \)
- all elements: inputs, outputs, ...

- transdichotomous RAM (Random Access Machine):
 - memory = array of \(S \) words
 - operations read/write \(O(1) \) words
 - words serve as pointers
 \(\Rightarrow w \geq \lg S \)
 - in particular \(w \geq \lg n \)

- word RAM: transdichotomous RAM
 with C-style operations:
 \([\), \(\), \(+\), \(-\), \(*\), \(/\), \(%\), \(<\), \(\), \&, \(\|\), \(^\)\), \^\)
 - standard model

- cell probe: count \# memory reads & writes
 - computation is free
 - unrealistic
 - useful for lower bounds

\[\text{BST} \text{ WEAK} \]
\[\text{transdichotomous RAM} \]
\[\text{word RAM} \]
\[\text{cell probe} \]
\[\text{pointer machine} \]
\[\text{bridging two worlds: machine/problem} \]
\[\text{STRONG} \]
Predecessor problem: maintain set S of n words subject to:
- Insert ($x \in U$)
- Delete ($x \in S$)
- Predecessor ($x \in U$): max $\{y \in S | y < x\}$
- Successor ($x \in U$): min $\{y \in S | y > x\}$

- Harder than dictionaries/hashing
- Comparison model \Rightarrow BST: $\Theta(lg n)$/op. optimal

- Word RAM:
 - Van Emde Boas: $O(lg w)$/op. $\Theta(n)$ space
 - y-fast trees: $O(lg w)$ w.h.p. $\Theta(n)$ space
 [Willard-IPL 1983]
 - Fusion trees: $O(lg w, n)$ w.h.p. $\Theta(n)$ space
 [Fredman & Willard-JCSS 1993; Raman-ESA 1996]

- L_{12}:
 - $\min: O(\sqrt{\frac{lg n}{lg \frac{lg w}{lg lg n}}})$ w.h.p. $\Theta(n)$ space
 - Cell probe lower bound: $\Omega(\sqrt{\frac{lg w}{lg \frac{lg w}{lg lg n}}})$
 $O(n \ poly(lg n))$ space $\Rightarrow \Omega(\min\{lg w, \frac{lg w}{lg \frac{lg w}{lg lg n}}\})$
 [Pătrașcu & Thorup - STOC 2006 & SODA 2007]
 - VEB optimal for $w = O(poly(lg n))$
 - Fusion trees optimal for $w = 2^{\Omega(lg n)}$

- Pointer machine, word specified by pointer:
 - Van Emde Boas: $O(lg lg w)$/op. $\Theta(n)$ space
 - Lower bound: $\Omega(lg lg u)$/op. $\Omega(lg w)$ space
 [Mehlhorn, Näher, Alt - SICOMP 1988]
van Emde Boas: (Peter) (reinterpreted by Bender & Farach-Colton)

- idea: \(T(u) = T(\sqrt{u}) + O(1) \)
 \(= O(\log \log u) \)

- split universe \(U \) into \(\sqrt{u} \) clusters, each size \(\sqrt{u} \)

- hierarchical coordinates: word \(x = <c, i> \)
 - \(c = x // \sqrt{u} \) = cluster containing \(x \)
 - \(i = x \% \sqrt{u} \) = \(x \)'s index within cluster

 integer division \(\uparrow \) mod

 - \(x = c \sqrt{u} + i \quad \Rightarrow O(1) \)-time conversion

- binary perspective:
 - split bits in half
 - \(c = \) high order = \(x \gg w/2 \)
 - \(i = \) low order = \(x \& (1 << w/2) - 1 \)
 - \(x = (c << w/2) | i \)

- recursive \(\text{vEB} \) \(V \) of size \(u \):
 - \(V.\text{cluster}[i] = \text{vEB} \) of size \(\sqrt{u} \) for \(0 \leq i < \sqrt{u} \)
 - \(V.\text{summary} = \text{vEB} \) of size \(\sqrt{u} \) \& \(w' = w/2 \)
 - stores which clusters \(c \) are nonempty
 - \(V.\text{min} = \) minimum element in \(V \), not stored recursively
 or None if \(V \) is empty
 - \(V.\text{max} = \) (copy of) max. element in \(V \)
\textbf{Successor} \((V, x = \langle c, i \rangle)\):
- if \(x < V.\text{min}\): return \(V.\text{min}\) (special: not stored recursively)
- if \(i < V.\text{cluster}[c].\text{max}\):
 return \(\langle c, \text{Successor}(V.\text{cluster}[c], i) \rangle\)
- else: \(c' = \text{Successor}(V.\text{summary}, c)\)
 return \(\langle c', V.\text{cluster}[c'].\text{min} \rangle\)

\textbf{Insert} \((V, x = \langle c, i \rangle)\):
- if \(V.\text{min} = \text{None}\): \(V.\text{min} = V.\text{max} = x\); return \(O(1)\)
- if \(x < V.\text{min}\): swap \(x \leftrightarrow V.\text{min}\)
- if \(x > V.\text{max}\): \(V.\text{max} = x\)
- if \(V.\text{cluster}[c].\text{min} = \text{None}\): Insert \((V.\text{summary}, c)\) \(\Rightarrow\) next call is \(O(1)\)
- Insert \((V.\text{cluster}[c], i)\)

\textbf{Delete} \((V, x = \langle c, i \rangle)\):
- if \(x = V.\text{min}\):
 \(c = V.\text{summary}.\text{min}\)
- if \(c = \text{None}\): \(V.\text{min} = \text{None}\); return \(O(1)\) (now empty)
 \(x = V.\text{min} = \langle c, i = V.\text{cluster}[c].\text{min} \rangle\)
- Delete \((V.\text{cluster}[c], i)\)
- if \(V.\text{cluster}[c].\text{min} = \text{None}\): (empty now)
 Delete \((V.\text{summary}, c)\) \(\Rightarrow\) previous call \(O(1)\)
- if \(V.\text{summary}.\text{min} = \text{None}\): \(V.\text{max} = V.\text{min}\)
- else: \(c' = V.\text{summary}.\text{max}\)
 \(V.\text{max} = \langle c', V.\text{cluster}[c'].\text{max} \rangle\)
- node = OR of children
- path from leaf \(x \) to root is monotone
- could binary search for 0\(\rightarrow \)1 transition
- max/min of last 0's left/right sibling is predecessor/successor of \(x \) (if \(\mathcal{E} \) is)
- store sorted linked list on elements to find successor/predecessor
- query in \(O(lg lg u) \) ~ roughly same as above

- even in pointer machine \& \(O(u lg w) \) space: node stores linked list of pointers to ancestor of height \(2^i \) for \(i = 0, 1, \ldots, lg w \)

- but updating these bits costs \(\Theta(lg u)/\text{op.} \)
- vEB's not-storing-min reduces to \(\Theta(lg w) \)

- again possible on pointer machine with \(O(u lg w) \) space [VEBKZ77]
Indirection: (trick from [Willard - IPL 1983])
- take $O(lg w)$ query, $O(w)$ update DS
 such as "simple" tree above
- reduce update to $O(lg w)$:
 split n elements into chunks of size $O(w)$

\[
\begin{array}{ccc}
\Theta(n/w) & \Rightarrow & \Theta(lg w) \text{ query} \\
\Theta(w) & \Rightarrow & \Theta(lg w) \text{ update} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{one representative} & \Rightarrow & \Theta(w) \text{ via BSTs}
\end{array}
\]

- query: query top $\rightarrow O(lg w)$
 query bottom $\rightarrow O(lg w)$
- update: update bottom $\rightarrow O(lg w)$
 split & possibly merge with neighbor
to keep chunks $O(w)$ size
 \Rightarrow update top $\rightarrow O(w)$, charged
to $O(w)$ updates in chunk

$\Rightarrow O(lg w)$ query & amortized update

- top structure can actually use $u' = \frac{u}{\Theta(w)}$:
bottoms can guarantee separation $\Omega(w)$
between representatives
 $\Rightarrow \Theta(w)$ space \sim on pointer machine!
- similar trick, splitting u directly instead of n,
 applied to stratified trees in [VEB-IPL1977]
Saving space:
- don't store empty clusters in vEB
 ⇒ V.clusters = hash table
 - Θ(1) w.h.p. e.g. via dynamic perfect hashing
 - space = O(# nonempty "child" clusters + 1)
 - charge each table entry to min in child
 - Insert cuts up element into O(lgw) min fields
 ⇒ O(n lg w) space
 - tight in worst case (⇒ not O(n)!
 - O(n) space via indirection as above

x-fast trees: [Willard - IPL 1983]
- don't store Øs in simple tree view
- store hash table of root-to-1 paths per length viewed in binary; 0 = left, 1 = right
- i.e. prefixes of elements in S
- O(lgw) query via binary search as before
- Θ(w) update as before
- Θ(nw) space

y-fast trees: [Willard - IPL 1983]
= x-fast trees
+ indirection as above
- O(lgw) query still
- O(lgw) amortized w.h.p. update
- O(n) space