TODAY: Dynamic Optimality II (of 2)
- lower bounds:
 - independent rectangles
 - Wilber 1 & 2
 - signed greedy
- Tango trees: $O(b \log n)$-competitive

Recall:
- point set is a valid BST execution
 \iff arborally satisfied set:
 rectangle spanned by two points
 not on a horizontal/vertical line
 contains another point
- Greedy algorithm conjectured $O(\text{optimal})$
- can be simulated online
Lower bounds: [Demaine, Harmon, Iacono, Kane, Patrascu]

Independent rectangles are **unsatisfied** &
\(\Rightarrow \) in input point set (accesses)

no corner is strictly inside another

Theorem: \(\text{OPT} \geq |\text{input}| + \frac{1}{3} \text{max} \# \text{ independent rectangles} \)

Signed rectangles: \(\square \) & \(\leftarrow \) types

- \(\leftarrow \)-satisfied if all \(\square \) rectangles have another pt.
- \(\text{OPT}_{\leftarrow} \) = smallest \(\leftarrow \)-satisfied superset of points

Lemma: \(\text{OPT}_{\leftarrow} \geq |\text{input}| + \text{max} \# \text{ independent } \leftarrow \text{-rectangles} \)

Proof:

1. find rectangle in indep. set & vertical line hitting just \(1 \) segment with endpoints on top & bottom edges of rectangle
2. find horizontally adjacent pts. of \(\text{OPT}_{\leftarrow} \) in rect. crossing line
3. charge indep. rectangle to those points
Assume input x & y coords. all distinct

1: take the widest rectangle

- sharing-a rects. left of sharing-b's (indep)
- sharing-neithers fit in between vertical edges
 ⇒ room left for vertical line

2: take p = topmost rightmost point in rectangle & left of line (e.g. a)
 q = bottommost leftmost point in rectangle & right of line & not below p (e.g. b)

3: p & q are not in any other common rectangle
 ⇒ pair won't get charged again
 - in any horizontal chain of charges
 ≤ 1 in input (by distinct y's)
 ⇒ added > # indep. rectangles
Wilber's second lower bound:
- given input (access) point set
 - for each point \(p \):
 - look at orthogonally visible points below \(p \)
 - count \# alternations between left/right of \(p \)
 - sum over all \(p \)

[Wilber - SICOMP 1989]

Proof: independent rectangle \(H \) alternation:

Conjecture: \(\text{OPT} = \Theta(\text{Wilber} 2) \)

Key-independent optimality: [Iacono - ISAAC 2002]
- suppose key values are "meaningless"
 \(\Rightarrow \) might as well permute them uniformly at random
- claim: \(\mathbb{E}[\text{OPT}] = \text{working-set bound} \)
 \(\Rightarrow \) splay trees are key-indep. optimal
- proof sketch: \(\mathbb{E}[\text{Wilber} 2(x_i)] = \Theta(\log t_i) \)
 (expected \# changes to max. in random permutation)
Wilber’s first lower bound: \cite{Wilber-SICOMP-1989}

- fix a lower-bound tree P on same keys (e.g. perfect binary tree)
- for each node y of P:
 count # alternations in x_1, x_2, \ldots, x_n between accesses in left & right subtrees of y (ignoring accesses to y or outside y’s subtree)
- sum over all y

Proof: independent rectangle alternation

Example: bit-reversal sequence

```
000 0
001 4
010 2
011 6
100 1
101 5
110 3
111 7
```

⇒ # alternations at y = size of y’s subtree
⇒ Wilber 1 = $\Theta(n \log n)$
⇒ $\text{OPT} = \Theta(n \log n)$

OPEN: Any access sequence \exists tree P such that $\text{OPT} = \Theta(\text{Wilber 1})$
Tango trees: [Demaine, Harmon, Iacono, Patrascu - SICOMP 2007]

- \(O(\log \log n)\)-competitive online BST
- \(P\) = perfect BST on \(n\) keys
- define **preferred child** of node \(y\) in \(P\) to be
 - left if accessed left subtree of \(y\) more recently
 - right if accessed right subtree of \(y\) more recently
 - none if no access to either subtree yet
- preferred path = chain of **preferred child pointers**
- partition of nodes of \(P\)
- idea: store each preferred path in auxiliary tree
- conceptually separate balanced BST (e.g. AVL)
- leaves link to roots of aux. trees of children paths
- has \(\leq \log n\) nodes (height of perfect \(P\))
 \(\Rightarrow\) supports search in \(O(\log \log n)\) time
- search starts at top aux. tree (containing root of \(P\))
- each jump to next aux. tree = nonpreferred edge
 = preferred edge change = +1 in Wilber 1
- \(k\) jumps \(\Rightarrow\) LB \(k\), UB \((k+1) \cdot O(\log \log n)\)
 \(\Rightarrow O(\log \log n)\)-competitive... if we can update preferred edges OK
Auxiliary trees:
- changing a preferred child = cutting one path & joining two paths:
 - if aux. trees were sorted by depth, this would be like split & concatenate
 - depth >d translates to interval of keys
 ⇒ can implement cuts & joins with $O(1)$ splits & concatenates
 - each costs $O(lg (\text{aux. tree})) = O(lg \lg n)$

In one tree: mark roots of aux. trees
- modify split & concat. to ignore children trees & manipulate adjacent trees:
Signed Greedy:
- sweep as in Greedy
- only satisfy boxes
- for every added point, get independent \square-rectangle
\Rightarrow get lower bound: \square-Greedy

Theorem: $\max\{\square\text{-Greedy}, \bigtriangleup\text{-Greedy}\} = \Theta(\text{biggest independent-rectangle LB})$
Proof: define $\text{OPT}_{\square} = \text{smallest union of } \square\text{-satisfying superset} \cup \square\text{-satisfying superset}$

$\text{OPT} \geq \text{OPT}_{\square}$
$\geq |\text{input}| + \frac{1}{2}\max\{\# \text{ independent rectangles}\}$
$\geq \frac{1}{2}\max\{\square\text{-Greedy}, \bigtriangleup\text{-Greedy}\}$
$\geq \frac{1}{2}\max\{\text{OPT}_{\square}, \text{OPT}_{\bigtriangleup}\}$
$\geq \frac{1}{4}(\text{OPT}_{\square} + \text{OPT}_{\bigtriangleup})$
$\geq \frac{1}{4}\text{OPT}_{\square}$
\Rightarrow constant-factor sandwich

Summary: so close!

Greedy \square & \bigtriangleup UB vs. Signed Greedy $\square + \bigtriangleup$ LB

Project: compare UBs & LBs for many pt. sets