TODAY: Dynamic Optimality I (of 2)
- binary search trees
- analytic bounds
- splay trees
- geometric view
- greedy algorithm
Q: is there one best binary search tree (BST)?

BST: comparison data structure
 supporting search
 (& predecessor/successor, insert/delete)

Also a model of computation (for DSs)
 - data must be stored in a BST
 - unit-cost operations:
 - walk left, right, or up (parent)
 - rotate this node & its parent

\[
\begin{align*}
&\text{rotate } x \\
&\text{rotate } y
\end{align*}
\]

(- create/destroy leaf)

\[\Rightarrow \text{search cost} = \text{length of root-to-node path}\]

DSs in this model:
 - vanilla BST (no rotations)
 - AVL trees
 - red-black trees (B-trees)
 - BB[\alpha] trees
 - splay trees
 - Tango trees
 - Greedy

\[\mathcal{O}(\log n) \quad /\text{op.}\]

\[\text{focus here}\]
Is $O(\lg n)$ search optimal?
- depends on sequence of searches
- say we're storing keys $1, 2, \ldots, n$
& search for x_1, x_2, \ldots, x_m

Sequential access property:
$1, 2, \ldots, n \Rightarrow O(1)$ amortized/operation
[in-order traversal in any BST]

Dynamic finger property:
$|x_i - x_{i-1}| = k \Rightarrow O(\lg k)$/operation, possible
[think level-linked B-trees ~ but BST]

Entropy bound/static optimality:
k appears p_k fraction of the time
$\Rightarrow O\left(\sum_{k=1}^{n} p_k \lg \frac{1}{p_k}\right)$/operation.
[store x_i at height $\leq \lg \frac{1}{p_k} + 1$]

Working-set property:
if t_i distinct keys accessed since last
access to x_i, then $O(\lg t_i)$ possible
[intuition: store most recent higher up]
\Rightarrow if all $x_i \in S$ then $O(\lg |S|)$/operation, possible
[form BST on S, put rest below]

* = hard to do with BST, but possible!
Unified property: \[\text{if } t_{ij} \text{ distinct keys accessed in } x_i \ldots x_j \text{ then } x_j \text{ costs } O \left(\lg \min_i \left[\frac{1}{t_i} \right] + t_{ij} + \alpha \right) \]

"fast if close to something recent"

- e.g. \(1, \frac{n}{2}, n, \frac{n}{2} + 1, 3, \frac{n}{2} + 3, \ldots \) \(\Rightarrow O(1) / \text{op} \)
- implies both working set & dynamic finger
- possible on pointer machine \([\text{Iacono, Badiu, Cole, Demaine, Iacono} - \text{Algorithmica 2007}]\)
- possible on BST up to additive \(O(\lg \lg n) \) \([\text{Bose, Douieb, Dujmović, Howat - Algorithmica 2012}]\)

OPEN: possible on a BST?

Dynamic optimality / \(O(1) \)-competitive:

\[\text{total cost} = O(OPT) \]

\(\text{min. cost of any BST on this access sequence} \)

- **OPEN**: possible for any (online) BST?
- **OPEN**: possible for any pointer-machine DS?
- **OPEN**: is any pointer-machine DS \(= O(OPT \text{ offline pointer-machine DS}) \)?

- balanced BST is \(O(\lg n) \)-competitive
- Tango trees are \(O(\lg \lg n) \)-competitive \([L6]\)
Splay trees: [Sleator & Tarjan – JACM 1985]
- binary search for \(x \)
- modify the path:
 - zig-zig:
 - zig-zag:
 - at the end, possible single rotation to put \(x \) at root
 - key feature: at most half the nodes on the path go down in the tree

Performance: (amortized)
- has working-set property [Sleator & Tarjan]
- has dynamic-finger property [Cole – SICOMP 2005]

- CONJECTURE: has unified property [Iacono]
- CONJECTURE: dynamically optimal [Sleator & Tarjan]
Geometric view:

access sequence
\rightarrow point set \{ (x_i, i) \}

BST execution
\rightarrow point set: which nodes touched during search(\(x_i\))?

Theorem: point set is a valid BST execution \iff Arborally Satisfied Set (ASS)

- rectangle spanned by two points in set, not on horizontal/vertical line, contains another point
- in fact must have another point on a rectangle side incident to either corner:

Corollary: \(\text{OPT} = \text{smallest ASS containing input} \)

OPEN: complexity? \(O(1)\)-approximation?
Proof of Theorem:

\(\Rightarrow \) consider rectangle spanned by \((i, x) \Rightarrow (j, y)\)
- let \(a_t = \text{lca of } x \& y\) just before time \(t\)
- for all \(t\): \(x \leq a_t \leq y\) & \(a_t\) is an ancestor of \(x \& y\)
\(\Rightarrow (a_i, i) \& (a_j, j) \in \text{execution}\)
 (need to touch all ancestors of touched nodes)
- want a third point in the rectangle
- if \(a_i \neq x\) then use \((a_i, i)\)
- if \(a_j \neq y\) then use \((a_j, j)\)
- else: \(a\) changes from \(x\) to \(y\) between times \(i \& j\)
\(\Rightarrow y\) rotated before time \(j\)
\(\Rightarrow (y, t) \in \text{execution for some } i \leq t < j\)
\(\Leftarrow \) define tree at all times to be treap:
- BST & heap ordered by next-touch-time
 - note: next-touch-time has some ties,
 so this is not uniquely defined
 - when we reach time \(i \), nodes to touch
 form a connected subtree at the top
 (by heap-order property)
 - these nodes get new next-touch-time
 - re-arrange into local treap
 (this still may be ambiguous — break ties
 arbitrarily — but still restricts global choice)
- claim: global treap

\[
\text{touched}
\xrightarrow{\text{heapify}}
\text{heaped}
\]

if \(y \) to be touched sooner than \(x \)
then \((x, \text{now}) \rightarrow (y, \text{next-touch}(y)) \)
is an unsatisfied rectangle:
(according to 2nd definition of ASS)

\[
\text{next-touch}(x) \rightarrow \circ \quad \text{empty by "if"}
\rightarrow \circ \\
\]

leftmost such point would be right child
of \(x \) after search(\(x_i \)), not \(y \)
Simple example:
Greedy algorithm: [Lucas 1988; Munro 2000]
- consider point set one row at a time
- add the necessary points on that row
- in tree view: re-arrange root-to-x path optimally for future searches

CONJECTURE: Greedy = \(\mathcal{O}(\text{OPT}) \)
or even: \(\text{OPT} + \mathcal{O}(m) \)
- seems obvious... "just" need to show you needn't stray from the access path

So what?

Theorem: online ASS algorithm
\(\Rightarrow \) online BST (with \(\mathcal{O}(1) \) slowdown)

Corollary: Greedy is actually an online BST!
- Conjecture \(\Rightarrow \) dynamically optimal
Proof sketch of theorem:

- Store touched nodes from access in a split tree: split(x) moves x to root & deletes x, leaving 2 split trees in $O(1)$ amortized time — if fully split:
 - really: all n splits in $O(n)$ time (& make split tree on n items in $O(n)$)
 - 2-3-4 tree with min & max pointers can split into n' & n'' in $O(\log \min\{n', n''\}) + O(n)$ total merges
 - Use potential $\Phi = \sum_{\text{split tree } T} (|T| - \log |T|)$

$\Rightarrow O(1)$ amortized search cost for split
- Simulate with BST:
 - interleaved min/max search

\Rightarrow BST is "treap of split trees", where heap order is by previous touch & ties mean in split tree (⇒ optimal order)
- Use proof similar to (⇒) above
- By ASS, when touching node in split tree, also touch predecessor & successor in parent split tree ⇒ cheap to reach