TODAY: Geometry II (of 2)
- application of fractional cascading
- kinetic data structures

\(O(\log n)\) 3D orthogonal range searching: (static) [Chazelle & Guibas - Alg. 1986]

1. \((-\infty, b_2) \times (-\infty, b_3):\) search for \(b_3\) in \(z\) list +O(1/k)
 - equivalent to stabbing vertical rays (from points) with horizontal ray (from \((b_2, b_3)\))

- draw horizontal segments through points
- subdivide faces to have bounded degree by extending some horizontal segments
 - like fractional cascading: insert \(\leq 1/2\) into left neighbor, recurse; ditto right
 \(\Rightarrow 0(n)\) space [Chazelle - SICOMP 1986]
- query searches for \(b_3\) among left rays
 then walks right \(k\) steps in \(O(1/k)\)
 (each crossed ray = 1 point in output)
2. \([a_1, b_1] \times (-\infty, b_2) \times (-\infty, b_3): \Omega(lg n \cdot search + k)\)
 - range tree on \(x\)
 - each node stores \(1\) on points in subtree
 \(\Rightarrow\) query reduces to \(Ω(lg n) \cdot 1\) queries

3. \([a_1, b_1] \times [a_2, b_2] \times (-\infty, b_3): \Omega(lg n \cdot search + k)\)
 - "range tree" on \(y\)
 - node \(v\) stores key = \(\max(\text{left}(v))\) (as before)
 \& 2 \(\) on points in \(\text{right}(v)\)
 \& \(y\)-inverted 2 \(\) on points in \(\text{left}(v)\)
 \(\Rightarrow\) query \([a_1, b_1] \times (a_2, \infty) \times (-\infty, b_3)\)
 - query: walk down tree
 - if key < \(a_2 < b_2\): walk right
 - if key > \(b_2 > a_2\): walk left
 - if \(a_2 \leq \text{key} \leq b_2\): stop
 - query 2 \(\) for \([a_1, b_1] \times (-\infty, b_2) \times (-\infty, b_3)\)
 - query 2 \(\)' for \([a_1, b_1] \times (a_2, \infty) \times (-\infty, b_3)\)
 \(\Rightarrow\) \(Ω(lg n) + O(1) \cdot 2\) queries

4. \([a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]: \Omega(lg n \cdot search + k)\)
 - same as 3 \(\) but on \(z\) \& recursing with 3
 instead of \(y\) \(\uparrow\) instead of 2
 - naively \(O(lg^2 n + k)\)
 - fractional cascading \(\Rightarrow\) \(O(lg n + k)\)
 - bounded degree 5: parent, children, 2 aux.
 - space: \(O(n lg^3 n)\) \(\) (\(lg\) per 2, 3, 4)
Kinetic data structures: moving data
- think: tracking physical objects (phones, cars, ...) [Basch, Guibas, Hershberger - J.Alg. 1999]

Data: \(\text{value/coordinate} = (\text{known}) \text{ function of time} \) (instead of a single number)
- e.g. affine \(a + b t \)
 \(\text{initial velocity} \)
- bounded-degree algebraic \(a + b t + c t^2 + \cdots \)
- pseudo-algebraic: any certificate of interest flips true/false \(O(1) \) times

Operations:
- \text{modify}(x, f(t)): replace x's function
- idea: motion estimation accurate "for a while"
- \text{advance}(t): go forward in virtual time
- other updates/queries usually about present (virtual) time

Approach:
- store data structure accurate now
- augment with certificates: conditions under which DS is accurate, which are true now
- compute failure time for each certificate
- store them in a priority queue
- as certs. invalidate, fix DS & replace certs
Kinetic predecessor:
- want pred/succ search in present in $O(\log n)$
- let's try a BST
- certificates: $\exists x_i \leq x_{i+1}$
 where $x_1 \times x_2 \times \cdots \times x_n$ is an in-order traversal
- $\text{failure}_i = \inf \{ t \geq \text{now} \mid x_i(t) \geq x_{i+1}(t) \}$
 (next time certificate i will fail)
- $\text{advance}(t)$:
 - while $t > Q$.min:
 - now = Q.min
 - event (Q.delete-min)
 - now = t
- event ($x_i \leq x_{i+1}$):
 - (in fact, $x_i = x_{i+1}$ now)
 - swap x_i & x_{i+1} in BST
 - add certificate $x'_i \leq x'_{i+1}$
 - replace certificate $x_{i-1} \leq x_i$ with $x_{i-1} \leq x'_i$
 & certificate $x_{i+1} \leq x_{i+2}$ with $x_{i+1} \leq x'_{i+2}$
 - update failure times in priority queue
Metrics:
1. **Responsive**: when certificate expires (event), can fix DS quickly \(O(\log n) \)
2. **Local**: no object participates in many certs. \(\implies \) modify is fast \(O(1) \)
3. **Compact**: # certs. is small \(\implies \) low space \(O(n) \)
4. **Efficient**: worst-case # DS events / worst-case # “necessary changes” is small \(O(1) \)

Efficiency: (the vaguest part of kinetic DSs)
- if we need to “know” sorted order “at all times,” need to update for each order change & that’s what we do
- if we need to support fast pred/succ. “at all times,” need to “approximately know” sorted order (?)
- usually study worst-case behavior for affine/pseudo-alg. data with no updates
- here: \(O(n^2) \)
 - \(\Omega \): \(\cdots \)
 - \(\Theta \): each pair passes \(\leq \) once for affine \(\Theta(1) \) for pseudo-alg.
Kinetic heap: [de Fonseca & de Figueiredo - IPL 2003]

- want find-min (& delete-min) in $O(lg n)$
- could use kinetic predecessor ~ can do better
- store a min-heap
- certificates:

 ![Diagram](attachment://heap_diagram.png)

 $x \leq y$, $x \leq z$
- event ($x \leq y$):
 - swap x & y in tree
 - update adjacent certificates

1. responsive: $O(lg n)$ (priority queue)
2. local: $O(1)$
3. compact: $O(n)$
4. efficient: $O(lg n)$

- $\Theta(n)$ changes to min in worst case
- Ω: 1 2 3 etc.
- Θ: once min changes $x \Rightarrow y$, x cannot be min again
 - claim $O(n lg n)$ events in DS for affine motion

- **OPEN**: (pseudo-) algebraic motions?
- **OPEN**: faster advance because don’t need to query interim times?
Proof: (Assuming Affine Motion)
- $\Phi(t) = \# \text{ events in future } > t$
 $\quad = \sum_x \left(\# \text{ descendants of } x \text{ at time } t \text{ that will overtake } x \text{ in future } > t \right)$

- $\Phi(t, x) = \sum_{y \text{ of } x} \left(\# \text{ descendants of } y \text{ at time } t \text{ that will overtake } x \text{ in } > t \right)$

- Consider event at time t:
 - $\Phi(t^+, v) = \Phi(t, v)$ for $v \neq x, y$
 (v gains/loses no descendants & isn't overtaken)
 - $\Phi(t^+, x) = \Phi(t, x, y) - 1$
 (remaining descendants, y)
 - $\Phi(t^+, y) = \Phi(t, y) + \Phi(t, y, z) \leq \Phi(t, y) + \Phi(t, x, z)$
 (overtake y ⇒ overtake x)*
 $= \Phi(t, y) + \Phi(t, x) - \Phi(t, x, y)$
 $\Rightarrow \Phi(t^+) \leq \Phi(t) - 1$

- $\Phi(0) \leq \sum_x \# \text{ descendants of } x$
 $\quad \leq O(n \log n)$
 $\quad = O(n \log n)$
 \square
Kinetic survey:
- 2D convex hull
 - also diameter, width, min. area/perim. rectangle
 - efficiency = \(O(n^{2+\epsilon})/\Omega(n^2) \)
 - OPEN: 3D?

- \((1+\epsilon)\) approximate diameter, smallest disk/rectangle
 in \((1/\epsilon)O(1)\) events
 [Agarwal & Har-El, SODA 2001]

- smallest enclosing disk:
 efficiency \(O(n^{3+\epsilon})/\Omega(n^2) \)
 [Demaine, Eisenstat, Guibas, Schulz - FCRC 2010]

- Delaunay triangulation
 - \(O(1)\) efficiency
 - OPEN: how many changes? \(O(n^{3+\epsilon}) \& \Omega(n^2) \)
 [Rubin - FOCS 2013]

- any triangulation:
 - \(\Omega(n^2) \) changes even with Steiner points
 [Agarwal, Basch, de Berg, Guibas, Hershberger - SoCG 1999]
 - \(O(n^{2+1/3}) \) events
 [Agarwal, Basch, Guibas, Hershberger, Zhang - WAFR 2000]
 - OPEN: \(O(n^3) \) ?
 - \(O(n^3) \) events for pseudo triangulations

- collision detection
 [Kirkpatrick, Snoeyink, Speckmann 2000]
 [Agarwal, Basch, Guibas, Hershberger, Zhang 2000]
 [Guibas, Xie, Zhang 2001] \(\rightarrow 3D \)

- MST
 - \(O(n^3) \) easy; OPEN: \(o(n^3) \)?
 - \(O(n^{2-1/6}) \) for H-minor-free graphs (e.g., planar)
 [Agarwal, Eppstein, Guibas, Henzinger - FOCS 1998]