Today: temporal data structures II
- partial retroactivity
- full retroactivity
- nonoblivious retroactivity

Think: time travel

Retroactivity: [Demaine, Iacono, Langerman - T. Alg. 2007]
- traditional DS formed by sequence of updates
- allow changes to that sequence (destroying old ver.)
- maintain linear timeline

\[t = \emptyset \rightarrow \text{insert(5)} \rightarrow \text{insert(7)} \rightarrow \text{delete-min} \rightarrow \cdots \rightarrow \text{now} \]

Dr. Who, Timecop, Back to the Future

- ops:
 - Insert(\(t, \text{"op(--)"} \)): retroactively do op() at time \(t \)
 - Delete(\(t \)): retroactively undo op. at time \(t \)
 - Query(\(t, \text{"op()"} \)): execute query at time \(t \) (relative to current timeline only)

- time specified as index, or via order-maintenance DS
- partial retroactivity: Query only in present (last \(t \))
- full retroactivity: Query at any time "Q" in Star Trek
Easy case:
- commutative updates: \(x \cdot y = y \cdot x \)
 \(\Rightarrow \text{Insert}(t, x) \equiv x \text{ in present} \)
- invertible updates: \(x \cdot x^{-1} = 0 \)
 \(\Rightarrow \text{Delete}(t) \equiv x^{-1} \text{ in present} \)
 \(\Rightarrow \text{partial retroactivity easy (update in present)} \)

- e.g. hashing, or array with \(A[i] \leftarrow \Delta \)
- e.g. search problem: maintain set \(S \) of objects
 subject to \(\text{query}(x, S) \) for object \(x \)
 & insert/delete objects
- decomposable search problem: [Bentley & Saxe - 1980]
 \(\text{query}(x, A \cup B) = \text{f(query}(x, A), \text{query}(x, B)) \)
- e.g. nearest neighbor, successor, point location

- full retroactivity in \(O(lg m) \) factor overhead
 via segment tree:

\[\text{balanced BST} \]

- time interval maps to \(O(lg m) \) subtree intervals
- Insert/Delete modify element’s existence interval
 \(\Rightarrow O(lg m) \) updates to DSs in nodes
- Query combines \(O(lg m) \) searches via \(f \)
General transformations:

- rollback method: retro. op. r time units in past with factor-r overhead via logging ("undo persistence")

- lower bound: $\Omega(r)$ overhead can be necessary
 - DS maintains two values X & Y, initially \emptyset
 - ops: $X = x$, $Y = \Delta$, $Y = X \cdot Y$, query: return Y
 - $O(1)$ time/op. in "straight-line program" model
 - $Y = a_n$, $Y = X \cdot Y$, $Y = a_{n-1}$, $Y = X \cdot Y$, ..., $Y = a_0$

 Computes poly. $a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ [Horner's Rule]

- Insert($t = \emptyset$, "$X = x$") changes X value

- evaluating degree-n polynomial requires $\Omega(n)$ worst-case arithmetic ops. in any field, independent of a_i preprocessing, in "history-independent algebraic decision tree"

 \Rightarrow integer RAM \Rightarrow generalized real RAM

 [Frandsena, Hansenb, Miltersen – I&C 2001]

- cell-probe lower bound: $\Omega(\sqrt[2]{r})$
 - DS maintains n words; arithmetic updates +&
 - compute FFT using $O(n \log n)$ ops.
 - changing w_i requires $\Omega(n)$ cell probes

 [Frandsena et al. 2001]

- OPEN: $\Omega(r/\text{poly} \log r)$ cell-probe lower bound?
Priority queues: [Demaine, Iacono, Langerman 2003]

- insert & delete-min, partially retroactive in \(O(\log n/\log\log n)\) per operation
- assume keys inserted only once
- \(L\) view: insert = rightward ray
delete-min = upward ray

Also, Delete("delete-min")

- Insert\((t, "insert(k)")\) inserts into \(Q\) now
 \[\max \{ k, k' \} \) k' deleted at time \(\geq t \}

- Bridge at time \(t \) if \(Q_t \subseteq Q\) now

- If \(t' \) is the bridge preceding time \(t \)
 then \(\max \{ k' \mid k' \text{ deleted at time } \geq t \}\)
 \[= \max \{ k' \in Q_{t'} \mid k' \text{ inserted at time } \geq t' \}\]
- store Qnow as balanced BST; one change/update
- store balanced BST on leaves = insertions, ordered by time, augmented with
 \forall node x: max\{k', \in Qnow \mid k' inserted in x's subtree\}
- store balanced BST on leaves = updates, ordered by time, augmented with
 0 for insert(k) with k \in Qnow
 +1 for insert(k) with k \notin Qnow
 -1 for delete-min

& subtree sums & subtree min/max prefix sums

\psi bridge = prefix summing to 0
\psi can find preceding bridge, change to Qnow in O(lg n) time

Other structures:
- queue: O(1) partial, O(lg m) full
- deque: O(lg m) full
- union-find (incremental connectivity): O(lg n) full
- priority queue: O(\sqrt{m} lg m) full
 [via general partial->full transform \times O(\sqrt{m})]
- successor: O(lg m) partial via search
 O(lg^2 m) full via decomposable search
 O(lg m) full [Giora & Kaplan - T.Als. 2009]
 \subseteq uses fractional cascading \[L3\]
 & van Emde Boas \[L11\]
Nonoblivious retroactivity: [Acar, Blelloch, Tangwongsan - CMU TR 2007]
- in algorithmic use of DS (e.g. priority queue in Dijkstra)
 updates performed depend on results of queries
 ⇒ put queries on timeline too
- retroactive update may change result of future queries
- new retro DS query: time of earliest error
- assume that algorithm corrects errors by further retroactive updates (e.g. Delete & re-Insert query)
 in increasing time order always ≤ errors
 - idea: just rerunning what’s changed of algorithm

Priority queue: insert, delete, & min in $O(\log n)$ time/op.

- invariant: all crossings involve horiz segments
 with left endpoint left of all errors
- maintain lowest leftmost crossing
 = leftmost lowest crossing
- Assume keys inserted only once
- Maintain earliest floating error on each key row
- Maintain priority queue on all errors by time
 \(\Rightarrow \) always know earliest error

- Insert \((x, \text{"min"})\): upward ray shot
 = fully retroactive successor \((-\infty) \preceq O(lg m)\)
 = fully retroactive insert, delete, min
 (decomposable search problem \(\sim\) but then \(lg^2 m\))

- Insert \((x, \text{"insert(y)"})\) / Delete \((x, \text{"delete(y)"})\):
 rightward ray shot to find earliest crossing
 (if lower than existing lower left crossing)
 = fully retroactive successor \((x) \preceq O(lg m)\)
 \(\cdots\) when all inserts are at time \(-\infty\)

- Insert \((x, \text{"delete(y)"})\) / Delete \((x, \text{"insert(y)"})\):
 - if was lowest crosser, find next by upward ray shot from leftmost crosser query
 - rightward ray shot to find earliest floater

- Delete \((x, \text{"min"})\):
 - if floating: rightward ray shot to next in row
 - if leftmost crosser: find next by upward ray shot for next min query (successor among queries)