
6.851 Advanced Data Structures (Spring’10)

Prof. Erik Demaine Dr. André Schulz TA: Aleksandar Zlateski

Problem 6 Sample Solutions

Dynamizing static search structures.

(a) To perform a successor search we start from the root node, perform a search for a successor
and follow the link to it’s left until we reach a leaf node.

The runtime recurrence is then: T (n) = S(Θ(n1/c)) + T (Θ(n1−1/c))
For fusion trees we have:

T (n) = O(logω n1/c) + T (Θ(n1−1/c))

T (n) = O(c−1 logω n) + O(c−1 logω n1−1/c + T (Θ(n(1−1/c)2)))

Hence

T (n) = O(
∞∑
i=0

c−1 logω n(1−1/c)i
) = O(

∞∑
i=0

c−1(1− 1/c)i logω n)

T (n) = O(c−1c logω n) = O(logω n)

(b) The space reccurence is: C(n) = Θ(n1/c)(C(n(1−1/c)) + 1). Since we have Θ(n1/c) subtrees of
size O(n(1−1/c)) plus Θ(n1/c) for the space at the current level. We see that the reccurence solves
to C(n) = O(n).

(c) We will constrain the number of nodes in a subtree rooted at a node at depth d to be

k = Θ(n(1−1/c)d
)

When inserting or deleting a node, we make sure that all the nodes on our path satisfy the
given property. when merging or splitting a node with k children we have to reconstruct its parent.
The node’s parent will have Θ(kc/(c−1)) descendands, and Θ(k1/(c−1)) children. Thus, rebuilding
the parent would take O(kb/c−1).

At any given level, we have to rebuild the node only after Θ(k) descendands have been in-
serted/removed. Hence the amortized cost is O(k

b
c−1
−1). Choosing b

c−1 − 1 <= 0, c ≥ b + 1 gives
us O(1) amortized cost per level, and the total of O(log log n)

1


