Transposing a matrix. Consider a point set \(\{(x_i, i)\} \) of \(k^2 \) points on a \(k^2 \times k^2 \) lattice representing the access sequence. For each point \((x_i, i)\) we introduce three new points at \((x_i - 1, i)\), \((k \left\lfloor \frac{x_i}{k} \right\rfloor , i)\) and \((k \left\lceil \frac{x_i}{k} \right\rceil , i)\).

The newly formed set is \textit{Abortally Satisfied}, hence it represents a valid BST execution. The set contains \(O(k^2) \), giving amortized cost of \(O(1) \) per access.

Logarithmic redux. Consider the access sequence, the point set \(X = \{(x_i, i)\} \) of \(m \) points on a \(n \times m \) lattice. Let \(\hat{x} \) be the median of all \(x \in X \). Inserting \(m \) points \((\hat{x}, i)\) will ensure that each rectangle connecting a point left of or at \(\hat{x} \) and a point right of or at \(\hat{x} \) contains a point.

Now consider the two subsets of \(X \), \(X_{x \leq \hat{x}} \) and \(X_{x \geq \hat{x}} \), each with at most \(m \) points, and at most \(n \) distinct \(x \) values.

We recursively apply the same technique, to obtained point set that is \textit{Abortally Satisfied}. We get the number of newly inserted points by solving the recursion \(N(m, \frac{n}{2}) = 2N(m, \frac{n}{2}, n) + m \).

The total number of accesses is then \(O(N(m, n) + m) = O(m \log n + m) = O(m \log n) \).