Problem 5 Due: Thursday, Mar. 11

Be sure to read the instructions on the assignments section of the class web page.

Cartesian trees in linear time. Show that a Cartesian tree for an array \(A[1, \ldots, n] \) can be computed in \(O(n) \) time.

Hint: One way to do this is adding the elements of \(A \) according to their order in \(A \) one after another.

Space requirements for integer data structures. As usual, \(u \) denotes the size of the universe. We assume that \(u \) is a power of 2.

1. Show that a van Emde Boas tree needs \(O(u) \) space.

2. How many entries are stored in the hash table of an \(x \)-fast tree in the worst case after adding \(n \) elements? In the lecture we gave a brief argument for \(n \log u \). However, this estimate was rough, since we overcounted the entries in the hash table. In particular, an entry in the hash table might be a prefix of different “keys”, and we assume that every prefix is only stored once. Give a sharper bound for the number of elements stored in the hash table in terms of \(u \) and \(n \).