Problem 2 Due: Thursday, Feb. 18

Be sure to read the instructions on the assignments section of the class web page.

Query time kd-trees. We consider a kd-tree that stores n points in the plane. Every node v of the kd-tree represents a region $\text{region}(v)$ in the induced subdivision of the plane.

1. Show that the boundary of an (axis-parallel) query rectangle can intersect at most $O(\sqrt{n})$ such regions.

2. Show that $\Omega(\sqrt{n})$ is a lower bound for the maximal number of regions that intersect the boundary of an axis-parallel query rectangle by defining a set of n points and a query rectangle appropriately.

Segment stabbing. Let S be a set of disjoint line segments in the plane.

1. Develop a data structure that can report all $s \in S$ that are hit by a vertical ray emanating from (x, y) towards ∞, that is

 $$\text{Above}(x, y) := \{s \in S \mid s \cap \{(x, y') \mid y \leq y'\} \neq \emptyset\}.$$

 Query times should be $O(\log n + k)$.

2. Develop a data structure that can report all $s \in S$ that are hit by a line segment with endpoints (x, y_1) and (x, y_2), that is

 $$\text{Between}(x, y_1, y_2) := \{s \in S \mid s \cap \{(x, y') \mid y_1 \leq y' \leq y_2\} \neq \emptyset\}.$$

 Query times should be $O(\log^2 n + k)$.

 Hint: Modify a segment tree.

![Figure 1: Illustration what the queries should report (thick lines).](image)