Today: temporal data structures
- persistence
- retroactivity

Persistence:
- keep all versions of DS
- operations specify which version
- update creates new version (never modify a version)
- 4 levels:
 1. partial persistence:
 - update only latest version
 - versions linearly ordered
 2. full persistence:
 - update any version
 - versions form a tree
 3. confluent persistence:
 - can combine >1 given version into new v.
 - versions form a DAG
 4. functional:
 - never modify nodes; only create new
 - version of DS represented by node ptr.
Partial persistence: [Driscoll, Sarnak, Sleator, Tarjan - JCSS 1989] any pointer-machine DS with $\leq p = O(1)$ pointers to any node (in any version) can be made partially persistent with $O(1)$ amortized multiplicative overhead ($& O(1)$ space/change)

Proof:
- store reverse pointers for nodes in latest version
- allow $\leq p+1$ (version, field, value) mods. in a node (using $p = O(1)$)
- to read node.field at version v, check for mods with time $\leq v$
- when update changes node.field $\leq x$
 - if node not full: add mod. (now.field, x)
 - else: create node with mods. applied ($&$ no mods.)
 update back pointers to this node (found via pointers)
 recursively change pointers to this node (found via back ptrs)
- $\Omega = \# full (p mods.) nodes in latest version
\Rightarrow O(p) = O(1)$ amortized cost per change

$O(1)$ worst-case [Brodal - NJC 1996] $O(\log (# changes))$ reading slowdown for p unbounded
Full persistence: ditto [Driscoll et al. 1989]
- linearize tree of versions via in-order traversal, marking begin & end times of each version
- store begin & end times in order-maintenance DS: [L21: Dietz & Sleator - STOC 1987]
 - insert time before/after specified time
 - does time \(t \) precede time \(t' \)?
 - \(\Rightarrow \) is version \(V \) an ancestor of \(V' \)?
 - in \(O(1) \) time/op.
- \(\Rightarrow \) can tell which mods. apply to desired version
- when node is full, split into two nodes each roughly half full: (like B-tree node)
 then recursively update pointers & back pointers to this node
- allow up to \(2(p+c+1) \) mods. \((c=\#ptrs./node) \)
- \(\Rightarrow \) even if half full \((p+c+1) \) & all \(c \) ptrs. move & all \(p \) back ptrs. move, still not full
- \(\Phi = \# \) full nodes \(\Rightarrow O(1) \) amortized cost

\[\text{OPEN: } O(1) \text{ worst case?} \]
- \(O(lg \ lg \ n) \) fully persistent arrays \(\Rightarrow \) RAM DS [Dietz - WADS 1989]
 - matching lower bound [Patrascu - unpub. 2008]
 - \[\text{OPEN: } \text{what about partial persistence?} \]
Confluent persistence:
- functional DSs [Okasaki - book 2003]
 e.g. deques with concat. in O(1)/op.
 double-ended queues [Kaplan, Okasaki, Tarjan - SICOMP 2000]
- logarithmic separation from pointer-machine DS [Pippenger - TPLS 1997]
- general transformation: [Fiat & Kaplan - J.Alg. 2003]
 \(d(v) = \text{depth of version } v \text{ in version } \text{DAG} \)
 \(e(v) = 1 + \log(\# \text{ paths from root to } v) \)
- overhead: \(\log(\#\text{updates}) + \max_v e(v) \) time\&space
- poor when \(e(v) \sim 2^{\#\text{updates}} \) e.g.:
 - can make exponential-size version in this way
 \Rightarrow \text{still exponentially better than naive}
 - \(\max_v e(v) \) lower bound \text{ASSUMING} all nodes addressable at all times \text{UNREASONABLE: normally have to navigate to nodes}
- tries with \(O(1) \) fingers,
 local nav. & subtree copy/delete [Demaine, Langerman, Price - Algorithmica]

<table>
<thead>
<tr>
<th>method</th>
<th>finger move time</th>
<th>space</th>
<th>modification (time = space)</th>
</tr>
</thead>
<tbody>
<tr>
<td>path copying</td>
<td>(\log \Delta)</td>
<td>(\emptyset)</td>
<td>depth</td>
</tr>
<tr>
<td>1. functional</td>
<td>(\log \Delta)</td>
<td>(\log \Delta)</td>
<td>(\log \Delta) local mods. cheap</td>
</tr>
<tr>
<td>1. confluent</td>
<td>(\log \log \Delta)</td>
<td>(\log \log \Delta)</td>
<td>(\log \log \Delta) globally balanced</td>
</tr>
<tr>
<td>2. functional</td>
<td>(\log \Delta)</td>
<td>(\emptyset)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>2. confluent</td>
<td>(\log \log \Delta)</td>
<td>(\emptyset)</td>
<td>(\log n)</td>
</tr>
</tbody>
</table>
OPEN: better transformation with $O(1)$ fingers? maintained to present separations?
OPEN: functional transformations?
OPEN: lists with split & concatenate?
OPEN: arrays with e.g. copy & paste?
Retroactivity: [Demaine, Iacono, Langerman - T Alg. 2007]
- traditional DS formed by sequence of updates
- allow changes to that sequence
- maintain linear timeline

ops:
- Insert(t, "op(...)"'): retroactively do op() at time t
- Delete(t): retroactively undo op. at time t
- Query(t, "op()"'): execute query at time t

- partial retroactivity: Query only in present (last t)
- full retroactivity: Query at any time

Easy cases:
- commutative updates: x, y \equiv y \cdot x
 \Rightarrow \text{Insert}(t, x) \equiv x \text{ in present}
- invertible updates: x \cdot x^{-1} \equiv \emptyset
 \Rightarrow \text{Delete}(t) \equiv x^{-1} \text{ in present}
- e.g. hashing, or array with A[i] += \Delta
 \Rightarrow \text{partial retroactivity easy}
- \underline{search problem}: maintain set S of objects subject to
query(x, S) for object x \in S \text{ comm. & invertible}
- \underline{decomposable search problem}: [Bentley & Saxe - T Alg. 1980]
query(x, A \cup B) = f(query(x, A), query(x, B))
- e.g. nearest neighbor, successor, point location
- full retroactivity in O(lg n) overhead via segment tree
General transformations: [Demaine et al. 2003]

- rollback method: retro op. r time units in past with factor-r overhead via logging ("undo persistence")
- lower bound: \(\Omega(r) \) overhead can be necessary
- DS maintains two values \(X & Y \) initially \(\emptyset \)
 - \(setX(x) \): \(X \leftarrow x \)
 - \(addY(A) \): \(Y \leftarrow Y + A \)
 - \(mulXY() \): \(Y \leftarrow X \cdot Y \)
 - \(query() \): return \(Y \)
- \(O(1) \) time/op. in "straight-line program" model
- \(addY(a_n), mulXY(), addY(a_{n-1}), mulXY(), ..., addY(a_0) \) computes poly. \(a_nx^n + a_{n-1}x^{n-1} + ... + a_0 \) [Cramer's rule]
- \(Insert(t=0, "setX(x)") \) changes \(x \) value
- evaluating degree-\(n \) polynomial requires \(\Omega(n) \) worst-case arithmetic ops. in any field

independent of \(a_i \), preprocessing in "history-independent algebraic decision tree"

\(\Rightarrow integer \) RAM \(\Rightarrow generalized \) real RAM
[Frandsena, Hansenb, Miltersen – I&C 2001]

- cell-probe lower bound: \(\Omega(\sqrt[3]{lg r}) \)
- DS maintains \(n \) words; arithmetic updates +,
- compute FFT using \(O(n \lg n) \) ops.
- changing \(w_i \) requires \(\Omega(\sqrt{n}) \) cell probes
[Frandsena et al. 2001]

- \(\boxed{OPEN}: \Omega(\sqrt[3]{r/poly \lg r}) \) cell-probe lower bound?
Priority queues: [Demaine et al. 2003]

- partial retroactivity in $O(\log n)/\text{op.}$
- assume keys inserted only once
- L-view: insert = rightward ray
 delete-min = upward ray

- Insert \((t, \text{"insert}(k)\text{"})\) inserts into \(Q_{\text{now}}\)
 \(\max \{ k : k \in Q_{\text{now}} \} \) \(k\) deleted at time \(\geq t \frac{2}{3}\) hard to maintain

- bridge at time \(t\) if \(Q_t \subseteq Q_{\text{now}}\)
- if \(t'\) is the bridge preceding time \(t\)
 then \(\max \{ k' : k' \text{ deleted at time } \geq t \frac{2}{3}\}\)
 \(= \max \{ k' : k' \in Q_{\text{now}} \text{ inserted at time } \geq t' \}\)
- store Q_{now} as balanced BST; one change/update
- store balanced BST on leaves = insertions, ordered by time, augmented with
 \forall node x: $\max \{ k' \mid Q_{\text{now}} \downarrow k' \text{ inserted in } x \text{'s subtree}\}$
- store balanced BST on leaves = updates, ordered by time, augmented with
 0 for $\text{insert}(k)$ with $k \in Q_{\text{now}}$
 +1 for $\text{insert}(k)$ with $k \notin Q_{\text{now}}$
 -1 for delete-min
 & subtree sums
 \Rightarrow bridge $= \text{prefix summing to } \emptyset$
 \Rightarrow can find preceding bridge, change to Q_{now} in $O(\log n)$ time

Other structures:
- queue: $O(1)$ partial, $O(\log m)$ full
- deque: $O(\log n)$ full
- union-find (incremental connectivity): $O(\log n)$ full
- priority queue: $O(\sqrt{m} \log m)$ full
 (via general partial \rightarrow full transform, $\times O(\sqrt{m})$)
- successor: $O(\log m)$ partial, trivial
 $O(\log^2 m)$ full easy
 $O(\log m)$ full [Giora & Kaplan - 2009]

(\Rightarrow optimal dynamic vertical
ray shooting among horizontal line segments)

OPEN: better? general?