Dynamic connectivity lower bound:

[Patrascu & Demaine - SICOMP 2006]

inserting/deleting edges & connectivity queries require $\Omega(\log n)$ cell probes/op.
even if connected components are paths
even amortized (but here prove for worst case)

Proof:
- consider $\sqrt{n} \times \sqrt{n}$ grid with
 perfect matching between
 columns i & $i+1$ for each i,
 forming permutation π_i
- block operations:
 - $\textbf{update}\ (i, \pi) : \pi_i \leftarrow \pi$
 = $O(\sqrt{n})$ edge deletions & insertions
 - $\textbf{verify-sum}\ (i, \pi) : \sum_{j=1}^{i} \pi_j = \pi$?
 = $O(\sqrt{n})$ connectivity queries
- Claim: \sqrt{n} updates + \sqrt{n} verify sums
 require $\Omega(\sqrt{n} \cdot \sqrt{n} \cdot \log n)$ cell probes
 $\Rightarrow \Omega(\log n)$/op.
Bad access sequence:
- for i in bit-reversal sequence:
 - verify-sum(i, \sum_{j=1}^{i} \pi_j) \Rightarrow \text{answer=yes (but DS must check)}
- update(i, \pi_{\text{random}})
 - uniform random permutation
- build tree over time:

- left & right subtrees of each node interleave

- Claim: for every node v in tree,
 say with l leaves in its subtree,
 during right subtree of v (time interval)
 must do \Omega(l \sqrt{n}) expected cell probes
 reading cells last written during left subtree

- sum lower bound over all nodes:
 - read r of write w only counted at lca(r, w)
 - linearity of expectation
\Rightarrow \Omega(n \lg n) lower bound total
(each leaf in \Theta(lg n) subtrees)
Proof of claim:

- left subtree has \(\frac{1}{2} \) updates with \(\frac{1}{2} \) rand. perms.
- any encoding of these permutations must use \(\Omega(l \sqrt{n \log n}) \) bits [information/Kolmogorov theory]
- if claim fails, find smaller encoding \(\Rightarrow \) contradict.
- setup: know the past (before \(v \)'s subtree)
- goal: encode (verified) sums in right subtree
 \(\Rightarrow \) can recover (updated) perms. in left subtree

\[
\begin{array}{cccccccc}
\emptyset & \uparrow \\
\downarrow & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

\(\pi_i = \pi_{i-1}^{-1} \circ \cdots \circ \pi_1^{-1} \circ \pi_j \circ \pi_{i+1}^{-1} \)

- farther left: known \(\Rightarrow \) not yet updated

Warmup: query is \(\sum(i) = \sum_{j=1}^{i} \pi_j \) \(\text{(partial sums)} \)
- let \(R = \{ \text{cells read during right subtree} \} \)
 \(W = \{ \text{cells written during left subtree} \} \)
- encode \(R \cap W \) (address & contents of each cell)
 \(\Rightarrow |R \cap W| \cdot O(\log n) \) bits [assume poly. space \(\Rightarrow w = O(\log n) \)]
- decoding alg. for sums in right subtree:
 - simulate sum queries in right subtree
 - to read cell written in right subtree: easy
 - in left subtree: \(R \cap W \)
 - in past: known

\(\Rightarrow |R \cap W| \cdot O(\log n) = \Omega(l \sqrt{n \log n}) \)

\(\Rightarrow |R \cap W| = \Omega(l \sqrt{n}) \)
Verify-sum instead of sum:
- permutations \(\pi \) given to verify-sum encode the information we want
 \(\Rightarrow \) no info LB
- setup:
 - know (fixed) past
 - don't know updates in left subtree
 - don't know queries in right subtree
 - but know that queries return YES
- decoding idea:
 - simulate all possible input permutations for each query in right subtree
 - know one returns YES, all others NO
- trouble: incorrect query simulation
 reads cells \(R' \neq R \)
 - if read \(r \in R' \setminus R \), it must be incorrect
 - but can't tell whether \(r \in W \setminus R \) or \(p \setminus (R \cup W) \)
 - can't afford to encode \(R \) or \(W \)
- idea: encode separator \(S \)
 for \(R \cap W \) & \(W \setminus R \)
- when decoding, to read cell written in right subtree: easy
 in \(R \cap W \): encoded explicitly
 in \(S \): must be in past \(\Rightarrow \) known
 not in \(S \): must not be in \(R \) \(\Rightarrow \) incorrect; ABORT
- only one simulation returns YES; rest NO or ABORT
 \(\Rightarrow \) recover desired permutation
 \(\Rightarrow \) encoding length \(\Omega (\sqrt{n} \log n) \)
Separators:
- Given universe \(U \) & number \(m \)
- **Separator family** \(\mathcal{S} \) for size-\(m \) sets if
 \[
 \forall A, B \subseteq U \text{ with } |A|, |B| \leq m \& A \cap B = \emptyset: \\
 \exists C \in \mathcal{S} \text{ such that } A \subseteq C \& B \subseteq U \setminus C
 \]
- **Claim:** \(\exists \) separator family \(\mathcal{S} \)
 with \(|S| \leq 2^0(m + \log_2 |U|) \)

Proof Sketch:
- Perfect hash family \(\mathcal{H} \) with \(|\mathcal{H}| \leq 2^0(m + \log_2 |U|) \)
 \[\text{[Hagerup & Thorup - STACS 2001]}\]
- Gives mapping from \(A \& B \) to \(O(n) \)-size table
- Store \(A \text{-or-} B \) bit in each table entry
- \(2^0(m) \) such vectors
 \(\Rightarrow 2^0(m) \cdot 2^0(m + \log_2 |U|) = 2^0(m + \log_2 |U|) \)

Encoding: \(R \cap W + \text{separator of } R \cap W \& W \setminus R \)
- **Size:** \(|R \cap W| \cdot O(\log n) + O(|R| + |W| + \log n) \)
 \[= \Omega(\log n \cdot \log n) \]
 \(\Rightarrow |R \cap W| = \Omega(\log n) \)
 \(\Rightarrow \text{Claim} \)
 or \(|R| + |W| = \Omega(\log n \cdot \log n) \) \(\Rightarrow \Omega(\log n) \) for op.
Update-query trade-off: (possible by same technique)
\[t_q \log \frac{t_u}{t_q} = \Omega(\lg n) \quad \& \quad t_u \log \frac{t_q}{t_u} = \Omega(\lg n) \]

- for \(t_u = \Omega(t_q) \), trees can match (small mods. to link-cut trees)
- for \(t_u = \Omega(\lg n (\lg \lg n)^3) \), can match [Thorup-STOC 2000]