Fusion trees: [Fredman & Willard - JCSS 1993]
- store \(n \) \(w \)-bit integers - here, statically
- \(O(\log w n) \) time for predecessor/successor
- \(O(n) \) space
- dynamic version via exponential trees: \(O(\log w n + \lg \lg n) \) updates [Andersson & Thorup - JACM 2007]

Consequence: \(\min \{ \log w n, \lg w^3 \leq \sqrt{\lg n} \} \) \(\text{fusion} \) \(\text{van Emde Boas} \)
upper bound for predecessor problem

Idea: B-tree with branching factor \(\Theta(w^{1/5}) \)
- height = \(\Theta(\log w n) \)
 \(= \Theta(\lg n / \lg w) \)
- search must visit a node in \(O(1) \) time
- not enough time to read the node \((w^{1/5} \ w\text{-bit words}) \) to figure out which child

Fusion-tree node:
- store \(k = O(w^{1/5}) \) keys \(x_0 < x_1 < \cdots < x_{k-1} \)
- \(O(1) \) time for predecessor/successor
- \(kO(1) \) preprocessing
Distinguishing \(k = O(w^{1/5}) \) keys:

- View keys \(x_0, x_1, \ldots, x_{k-1} \) as binary strings (0/1)
 i.e. root-to-leaf paths in height-\(w \) binary tree (left/right)

\(\Rightarrow \) \(k-1 \) branching nodes

\(\Rightarrow \leq k-1 \) levels

containing branching nodes

i.e. bits where \(x_0, x_1, \ldots, x_{k-1} \) first differ

(first distinct prefix)

- Call these **important bits** \(b_0 < b_1 < \cdots < b_{r-1} \),

\(r < k = O(w^{1/5}) \)

(perfect) \(\text{sketch}(x) = \) extract bits \(b_0, b_1, \ldots, b_{r-1} \) from \(x \)

i.e. \(r \)-bit vector whose \(i \)th bit = \(b_i \)th bit of word \(x \)

\(\Rightarrow \text{sketch}(x_0) < \text{sketch}(x_1) < \cdots < \text{sketch}(x_{k-1}) \)

& can pack (fuse) into one word: \(k \cdot r = O(w^{2/5}) \) bits

- Computable in \(O(1) \) time as \(AC^0 \) operation

 [Andersson, Miltersen, Thorup - TCS 1999]

- We’ll see a cool way to compute approximate

 sketch using multiplication & standard ops.

Node search: for query \(q \), compare \(\text{sketch}(q) \)

in parallel to \(\text{sketch}(x_0), \ldots, \text{sketch}(x_{k-1}) \)

- Again \(AC^0 \) operation on \(O(1) \) words

 & we’ll see a nice way with standard ops.

\(\Rightarrow \) find where \(\text{sketch}(q) \) fits among \(\text{sketch}(x_0) < \cdots < \text{sketch}(x_{k-1}) \)

- Want where \(q \) fits among \(x_0 < \cdots < x_{k-1} \)
Desketchifying:

- Suppose \(\text{sketch}(x_i) \leq \text{sketch}(q) < \text{sketch}(x_{i+1}) \)
- Longest common prefix = lowest common ancestor between \(q \) & (either \(x_i \) or \(x_{i+1} \))

whichever’s longest/lowest

= Node \(y \) where \(q \) fell off paths to \(x_i \)’s
- If \(\|y\|+1 \)st bit of \(q \) is 1:
 - Nearest \(x_i \) is in \(y0 \) subtree
 - Nearest extreme in that subtree is \(e = y011...1 \)
- Else: \(e = y100...0 \)

- Predecessor & successor of \(q \) among \(x_i \)’s
- Predecessor & successor of \(\text{sketch}(e) \) among \(\text{sketch}(x_i) \)’s

(desketchified via \(\text{sketch}^{-1} \))
Approximate sketch(x): on word RAM
- don't need sketch to pack b_i bits consecutively
- can spread out in predictable pattern of length O(w^{4/5})
 $\text{independent of } x$

Idea: mask important bits: $x' = x \text{ AND } \sum_{i=0}^{r-1} 2^{b_i}$
& multiply $x'.m = (\sum_{i=0}^{r-1} x_{b_i} 2^{b_i}) \cdot (\sum_{j=0}^{r-1} 2^{m_j})$
 $= \sum_{i=0}^{r-1} \sum_{j=0}^{r-1} x_{b_i} 2^{b_i+m_j}$

Claim: for any $b_0, b_1, ..., b_{r-1}$ can choose $m_0, m_1, ..., m_{r-1}$ such that
 a) b_i+m_j are all distinct (no collision)
 b) $b_0+m_0 < ... < b_{r-1}+m_{r-1}$ (preserve order)
 c) $(b_{r-1}+m_{r-1})-(b_0+m_0) = O(w^4) = O(w^{4/5})$ (small)

\Rightarrow approx-sketch(x) = $[(x.m) \text{ AND } \sum_{i=0}^{r-1} 2^{b_i+m_i}] >> (b_0+m_0)$
 $\text{discard } i \neq j$

Proof: ① choose $m'_0, m'_1, ..., m'_{r-1} < r^3$ such that $b_i+m'_j$ are all distinct modulo r^3 (strong a)
 - pick $m'_0, m'_1, ..., m'_{r-1}$ by induction
 - m'_k must avoid $m'_i + b_j - b_k \forall i, j, k$
 $r \times r \times \Rightarrow tr^2 < r^3$ choices

\Rightarrow choice for m'_k exists
 \Rightarrow to make nonnegative

② let $m_i = m'_i + (\lfloor \frac{w}{r^3} \rfloor \times r^3 \text{ rounded down to mult of } r^3)$
 $\equiv m'_i \pmod{r^3}$

$\Rightarrow m_i + b_i$ in r^3 interval after $(\lfloor \frac{w}{r^3} \rfloor + i) \cdot r^3$

$m_0 + b_0 < \cdots < m_{r-1} + b_{r-1}$

$\equiv w \approx w + r^4 \Rightarrow \text{diff: } O(r^4)$ ⑥ ⑦
Parallel comparison:
- sketch(node) = \(1 \) sketch(x\(_0\)) \(\cdots \) 1 sketch(x\(_{k-1}\))
- sketch(q)\(^k\) = 0 sketch(q) \(\cdots \) 0 sketch(q)
- difference = \(\left(\frac{1}{\phi}\right) \) **** \(\cdots \) \(\left(\frac{1}{\phi}\right) \) ****
- And with
-\[\rightarrow \left(\frac{1}{\phi}\right) \) 00000 \(\cdots \) \(\left(\frac{1}{\phi}\right) \) 00000

1 if sketch(q) \(\leq \) sketch(x\(_i\))
0 if sketch(q) \(> \) sketch(x\(_i\))

\[\Rightarrow \text{these bits look like } 00000111 \]
where sketch(q\(_f\)) fits

new index of most sig. 1 bit

- multiply with
-\[\rightarrow \left[\#1's\right] \] desired
\[\left[\#1's\right] \text{ to right} \text{ last 1} \]

or if you prefer:

Index of most significant 1 bit: 00010110 \(\Rightarrow \) 4
- AC\(^o\) operation [Andersson, Miltersen, Thorup 1999]
- instruction on most modern CPUs
 (see Linux kernel: include/asm-*/*bitops.h)
- computable in O(1) using fusion tricks
 [Fredman & Willard 1993]