6.851: Advanced Data Structures Spring 2007

Lecture 13 — April 2, 2007
Prof. Erik Demaine Scribe: Hooyoung Chung

1 Introduction

The topic of this lecture is the fusion tree, another data structure to solve the predecessor/successor
problem. Given a static set S C {0,1,2,...,2% — 1}, fusion trees can answer predecessor /successor
queries in O(log,, n).

Essentially, fusion trees are B-trees with a branching factor of k = ©(w'/%). Tree height is
log,,1/5 1 = £ log,, n = O(log, n), so we can achieve the desired O(log,, ) query time if we can solve
the predecessor problem in O(1) at each node. Doing this requires ingenuity—we can examine at
most O(w) bits in O(1) time, whereas each of our ©(w'/®) keys is w bits. We will accomplish O(1)
per node by looking at only important bits of the keys, and by using parallelism to our advantage.

2 Fusion Tree Nodes

For a node in the structure, consider the keys x1 < x9 < --- < xp. Each of these is a w-bit string.
We can also view it as a root-to-leaf path in a binary tree whose child edges are labeled with Os and
1s: on encountering a 0 we move to the left child, on 1 we move to the right. (This is basically a
trie; we don’t need the end marker $ because the strings are uniformly length w.) A branching node
is a node in the trie neither of whose subtrees is empty; there are exactly k — 1 such nodes. If we
mark the horizontal levels of the trie containing branching nodes, there are at most k—1 = O(w'/%)
of these. Note that a level of the trie corresponds to a bit position in a w-bit string. Call these bit
positions b; < by < --- < b, the node’s important bits.

The sketch of a word is the r-bit binary string given by extracting the important bits from
it, i.e., SKETCH(Z;W;O1 2x;) = >.i_; 2%y, Sketches are brief enough to be very useful to us:
since 1 < k—1 = O(w'/?), we can concatenate the sketches of a node’s k keys and the re-
sult is a bit string of length O(w?/%), which will fit in one word. Then, on a query g, we
can compute SKETCH(q) and compare it with every key simultaneously in parallel. The way
to do this is to pack the sketches of the keys together with a 1 bit of padding on the left
side of each, that is, 1SKETCH(z1)1SKETCH(z2)1 - - - 1SKETCH(zy). Given SKETCH(q), we compute
OSKETCH(q)OSKETCH(q)0 - - - 0SKETCH(q) (repeated k times)—this is just SKETCH(q) x (1 4+ 2" +
22" 4 ... 4 2F7). The difference of these two words has a 0 in the r(i — 1)th place from the left if

SKETCH(q) > SKETCH(z;) and a 1 otherwise. This takes 1 operation.

Note that SKETCH preserves order of the keys we built it on—SKETCH(z1) < SKETCH(z2) < -+ <

SKETCH(z))—so if SKETCH(zj) < SKETCH(q) < SKETCH(z 1), bits 0, 7, ..., r(j — 1) from the left
are 0 and rj, ..., r(k — 1) are 1. We would like to have the value of j, the index of ¢’s “sketch
predecessor.” Once we mask out the “junk” bits with a single AND, rj is the most significant bit

of the comparison word. The MSB is easily computable in AC?, as well as being a fairly standard



operation on physical microprocessors (e.g. Pentium). Surprisingly, it has been shown ([3]) that
MSB is computable with a very complicated (but constant time) series of operations in the word
RAM model.

So j is easy to compute. Note that we are not done: x; and xj;1 are not necessarily related to
the predecessor or successor of ¢, as SKETCH does not preserve order on all words—just those that
branch off from one another at the branching positions we selected (i.e., the keys). However, they
give some information about the predecessor or successor of ¢q. Assume that ¢ diverges from its
predecessor lower than the point of divergence with the successor. Then, one of x; or x;; must
have a common prefix with ¢ of the same length as the common prefix between ¢ and its predecessor.
This is because the common prefix remains identical through sketch, and the sketch predecessor
can only deviate from the real predecessor below where ¢ deviates from the real predecessor.

We can find the length of the common prefix in O(1) by taking bitwise XOR and finding the MSB.
Again, assume it is the predecessor that deviates below. Now the question is how to find the actual
predecessor based on the known common prefix. If C'is the common prefix, the predecessor is of the
form C0A, and ¢ has the form C'1B for some A and B. We now construct the word ¢ = C011...1
and, as above, calculate z; such that SKETCH(z;) < SKETCH(q') < SKETCH(z;4+1) in O(1). This
element is ¢’s predecessor among the node’s keys. We now proceed with the fusion tree query by
recursing down the corresponding branch.

How are we sure that the sketch predecessor of ¢’ is ¢’s predecessor? Since C'is the longest common
prefix between ¢ and any x;, we know that no x; begins with the string C'1. Hence, the predecessor of
g must begin with C'0, and it must also be the predecessor of ¢ = C011...1. Now, the predecessor
of ¢’ is the same as its sketch predecessor: this follows because all important bits in ¢’ after C are
1, and thus ¢’ remains the maximum in the subtree beginning with C, even after sketching. Thus,
the maximum element x; beginning with C' is actually the predecessor of q.

3 Perfect and Approximate Sketches

The sketch function described above is perfect: we pull out precisely the important bits of x.
Unfortunately, it is impractical (w(1)) to compute, at least under the operations of our integer
word RAM model. Luckily, we can compute an approximate sketch of size O(w4/ ®) in constant
time; this is enough to fit the sketches of O(w1/5) keys packed into a word. (It turns out that, as
PERFECT-SKETCH is in AC%—see [2]—we can use k = O(w'/?) keys on each node in the AC® RAM
model; this translates to a constant factor in overall query time.)

Like PERFECT-SKETCH, an approximate sketch has the bits b1, bo, ..., b, in order, but they may
be separated by zeros. Formally, we want SKETCH(Z;TU:_OI 2;2Y) = YT, 25,25, where ¢1 < ¢z <
e <o < O(w4/ %) are precomputed from the b; in polynomial time. We show how to define this
function and how to compute it in O(1) with a clever use of multiplication:

1. Construct mq, ma,...,m, so that each of b; + m; are distinct modulo r3. This can be done
iteratively: if we have already picked my,..., m; so that there are no conflicts, it is enough
to pick an my;q1 that is not congruent to any m; + b; — b modulo 3 for 1 < i <t and
1 < j,k < r. Since there are fewer than 3 numbers to avoid, there must be some value of
my+1 that works.



2. Let m/ equal m; plus the correct multiple of r® to make w + r3(i — 1) < m} + b; < w + 3.
These values are in the right order: w < m} + by < mh +be < ... <ml +b, < w+ O(r?).

3. Take ¢; = m} 4+ b; — w. The algorithm to compute SKETCH(z) is as follows: given z =
Z;T”:_Ol 2;2¢, we mask to leave only the b; bits, ending up with >_7_, xp,2%.

o T T T
Next we mUlth ly this by m = Z 2 to get Z Z xbi2m3’+bi. From step 2, the
i=1 j=1i=1
powers of 2 in this expression are distinct, hence if we mask to consider only bits of the form
m;, + by, we are left with 3°7_, 23, 2™ Finally, dump the low-order word to get the desired
function.

4 Dynamic Predecessor/Successor

The amount of work necessary to build a fusion tree node (wo(l)) is too great to support fast
updates. We can offset this problem using the technique of indirection from last lecture. Say that
rebuilding a node takes w®; then we can put the elements into buckets of size ©(w®), within which
we maintain BSTs. A query or update thus requires amortized O(lg,, n), plus O(lgw®) = O(lgw)
to search within the representative BST.

An alternative construction, which achieves the current best known dynamic set performance, uses
exponential trees for O(log, n + lglgn) per operation—see [1].

References

[1] A. Andersson and M. Thorup. Tight(er) worst-case bounds on dynamic searching and priority
queues. STOC 2000: 335-342.

[2] Arne Andersson, Peter Bro Miltersen, Mikkel Thorup. Fusion trees can be implemented with
AC? instructions only. Theor. Comp. Se., 215(1-2):337-344, 1999.

[3] M. L. Fredman and D. E. Willard. Surpassing the information theoretic bound with fusion
trees. J. Comput. Syst. Sci., 47(3):424-436, 1993.



