On Weak d-universal Hash Families. Since \(x \neq y \), without loss of generality we assume their first bit is different. Notice that \(\Pr[h_M(x) = h_M(y)] = \Pr[M(x - y) = 0] \). The key observation is that for any \(M \) such that \(M(x - y) = 0 \), the first column is determined uniquely once we fix the other \(\ell - 1 \) columns randomly. Therefore, the probability of a collision is exactly

\[
\frac{2^{k(\ell-1)}}{2^{k\ell}} = \frac{1}{2^k} = \frac{1}{m}
\]

Deterministic y-fast tries. In the indirection step, we group elements into groups (BSTs) of size \(\lg^6 u \) instead of \(\lg u \). First notice that queries require \(O(\lg \lg u) \) time as our hash function can be evaluated in \(O(1) \) time. So we only need to verify that updates cost \(O(\lg \lg u) \) as well. An “expensive” insertion (i.e. when splitting or merging BSTs) consists of \(\lg u \) hash insertions each taking \(\lg^5 u \) time. So every \(\Theta(\lg^6 u) \) insertions we have an expensive insertion that costs \(\lg^6 u \) time (\(O(1) \) amortized). The “cheap” insertions (i.e. when inserting into a BST) cost \(O(\lg \lg^6 u) = O(\lg \lg u) \).

Range Existence Queries.

We store the binary prefixes of all elements in \(S \) in a trie similar to that of the y-fast trie, but without indirection (hence the \(O(n \lg u) \) space). In addition, every trie node stores the minimum and maximum element in its subtree. For \(\text{req}(a, b) \), we first compute \(x = \text{LCA}(a, b) \). This can be done in \(O(1) \) time by finding the most significant bit of \(a \oplus b \).

- if \(x \) is not in the hash table return false.
- otherwise, return true iff the maximum of \(x.left_child \) or the minimum of \(x.right_child \) are in the range \([a, b] \).