Approximate Pattern Matching Under the Edit Distance Metric.

Definition: An e-path in the dynamic program table is a path that starts in row zero and specifies a total of exactly e errors (mismatches, insertions and deletions).

Definition: An e-path is farthest reaching in diagonal d if it is an e-path that ends in diagonal d, and the index of its ending column is largest among such e-paths.

To begin, when $e = 0$, the farthest reaching 0-path ending on diagonal d corresponds to the LCP of $P[1..m]$ and $T[d..n]$. For $e > 0$, the farthest reaching e-path on diagonal d can be found by considering the following three paths that end in diagonal d.

- the farthest reaching $(e - 1)$-path on diagonal $d + 1$, followed by one vertical edge (deletion from P) to diagonal d, followed by the maximal extension along diagonal d that corresponds to identical substrings in P and T.

- the farthest reaching $(e - 1)$-path on diagonal $d - 1$, followed by one horizontal edge (deletion from T) to diagonal d, followed by the maximal extension along diagonal d that corresponds to identical substrings in P and T.

- the farthest reaching $(e - 1)$-path on diagonal d, followed by one diagonal edge (mismatch), followed by the maximal extension along diagonal d that corresponds to identical substrings in P and T.

Notice that each “maximal extension” can be found in $O(1)$ time using LCA queries on a suffix tree of $P \# T$. Therefore, we can compute the value of the farthest reaching k-paths on all diagonals in $O(nk)$ time ($O(n)$ diagonals, k locations on each diagonal). Any k-path that reaches row m in column c say, means that the edit distance between P and a suffix of $T[1..c]$ is at most k.