Pattern matching via suffix arrays.

(a) It’s easy to show that \(\text{lcpl}(i, j) = \min \{ LCP[i], LCP[i + 1], \ldots, LCP[j - 1] \} \)

(b) To find a pattern \(p \) in \(SA \), we find the largest interval \([L, R]\) such that \(p \) is the prefix of all elements in \(SA[L], \ldots, SA[R] \). We start with \(L = 1 \) and \(R = n \), and in our binary search, we keep track of the number of characters \(k \) of \(p \) that we have matched so far. Suppose we have matched \(k \) characters and the binary search is at position \(L \) (position \(R \) is symmetric). Let \(M \) be the midpoint between \(L \) and \(R \). We compare \(k \) to \(\text{lcpl}(L, M) \).

- if \(k < \text{lcpl}(L, M) \) we narrow the search to the interval \([M, R]\).
- if \(k > \text{lcpl}(L, M) \) we narrow the search to the interval \([L, M]\).
- if \(k = \text{lcpl}(L, M) \), only then do we have to read additional characters from \(p \) and compare with \(SA[M] \) until a mismatch is found (which determined the next direction of the binary search).

We read each character of \(p \) only once, so the total time is \(O(m + \lg n) \).

(c) For non constant alphabets, the \(O(n) \) space required by the suffix array is better than the \(O(n|\Sigma|) \) space required for the suffix tree. Also, the additional \(O(\lg n) \) time used in searching a suffix array is negligible if \(m = \Omega(\lg n) \).