
6.851 Advanced Data Structures (Spring’07)

Prof. Erik Demaine TA: Oren Weimann

Problem 3 – Solution

Dynamic connectivity with key values. The key idea is to preform the added operations only
on the ET forest of Flg n. We assign a key to each node in an ET-tree. The value of this key is set
to ∞ for all nodes but those that represents a first occurrence in the Euler tour. Every node in the
ET tree also stores the smallest value associated with any node within the ET-subtree rooted at it.

find-min(v) and set-key(v,x) are both done by traversing the path from v to its root in the
ET forest of Flg n (the latter also fixes the minimum value fields along the path). Also, during
the BST splitting (that is done when we link or cut ET-trees) we fix the minimum value fields
appropriately. If we use ET-trees with branching factor of 2 we get that set-key takes O(lg n) time
as the ET-trees are balanced. However, since we use ET-trees with branching factor of 2 we don’t
have the O(lg n/ lg lg n) time for findroot (but rather O(lg n)).

An alternative solution (also accepted) is to use ET-trees with branching factor of lg n. This
way, findroot takes O(lg n/ lg lg n) but set-key takes O(lg2 n/ lg lg n) which is worse than O(lg n).

Dynamic connectivity with path queries. The main idea is “the difference between knowing
the path and walking the path”. We can check if a path exists by doing findroot on both v and w
in the ET-tree of Flg n (in O(lg n/ lg lg n) time). If indeed they are connected, we trace a path by
tracing parent pointers of v and w in Flg n. Notice that the parent pointers represent Flg n and not
its ET tree. Such parent pointers can be easily updated when operations are done on the ET tree.

An alternative solution is to find the parent pointers using the ET-tree (rather than explicitly
storing them). To find the parent pointer of v, find it’s last occurrence in the ET-tree (in O(1)
time). v’s parent is the next node in the Euler tour (also can be found in O(1) time).

1


