Aston Notes: Wildcard String Matching
- wildcard = single arbitrary character
- all-to-all matching: many patterns & texts
 - various special cases of interest
- offline: [Cole et al.]
 - $O(m + 2^k \log \log n + \text{output})$ query
 - $O(n \log n + x(k + \log x)^k/k!)$ preprocessing.
- online: [Fischer & Paterson 1974]
 - convolution of characters' binary codes
 - $O(n \log m \log |\Sigma|)$ query
 - wildcards in text & pattern
- online improvements:
 - $O(n \log n)$ Monte Carlo [Indyk 1998]
 - $O(n \log m)$ Monte Carlo [Kalai 2002]
 - $O(n \log m)$ deterministic [Cole & Harihan 2002]
Meshkat Farvokhzadi: Entropy & Information Rate in email

- Kolmogorov complexity of string \(x = \) length of shortest program outputting \(x \)
 - uncomputable
 - compression = upper bound

- 650,000 email corpus
 but anonymized & hashed as word set for privacy
 \(\Rightarrow \) can't do Lempel-Ziv, can do Huffman
 - but don't really want different codebook per message ~ use global

- use Enron email database to measure these effects of hashing

- measure change in person's entropy, info. rate over time

[RESEARCH/IMPLEMENTATION]
Kah Keng Tay: Sublogarithmic Nearest Neighbor
- Voronoi diagram as black box
- split into vertical slabs thru Voronoi vxs.
- binary search for slab, within slab
- new approach: y-like y-fast
 - quad trees + hashing + Voronoi + indirection
 - $O(n \log^2 n)$ preproc., $O(n)$ space
 - $O(\log \log n)$ expected query
 assuming uniform point set
Aaron Bernstein: Distance Sensitivity Oracles

- query: distance from u to v avoiding a vertex x
- motivation: Vickery pricing
- $\tilde{O}(mn^2)$ time, $\tilde{O}(n^5)$ space
- $O(mn^{1.5})$ time, $\tilde{O}(n^{3.5})$ space
- **new**: $\tilde{O}(mn^{1.5})$ time, $\tilde{O}(n^3)$ space
 - based on random sampling
 - also: $\tilde{O}(n^3)$ time (good for dense graphs)
 $O(n^3 \sqrt{m})$ time for unweighted graph

THEORY
Alex Schwendner: Highly Connected Components

- k-vertex-connectivity query: are there k vertex-disjoint paths from u to v
- $O(lg^4 n)$ updates for 2-edge [Holm et al.]
 - maintain nontree edges in levels too
 - each induces a cycle
- $O(lg^5 n)$ updates for 2-vertex [ibid]
- 3 & 4: much slower
- future: polylg for $k = O(1)$?

[Survey]
Matthew Hofmann & Aditya Rotham: implementing predecessor

- balanced BSTs
- van Emde Boas
- x-fast & y-fast trees
- implemented FKS hashing + optimizations
 - VEB tweak: scan summary linearly if small
 - round up to next 2^k
- test on 32-bit architecture, pretending to have $w = 8, 16, 32$
 - VEB is factor 40-60x slower than BST!
 & slows when $n \uparrow$ because of min opt.
- x-fast & y-fast in progress

IMPLEMENTATION
Boris Alexeev: Perfect Heaps
- motivation: MSTs
- soft heaps: [Chazelle]
 - after n operations, can corrupt Θn elts.
 - O(1) time meld, delete, findmin,
 O(lg 1/ε) insert
 - fastest deterministic MST alg. O(nα(n))
 - # inversions < εn² => sort in linear time
 - partitioning into intervals of ≤ 3εn², linear time
- new: “perfect heaps”
 - simple: trees always perfect
 - almost as good as Fibonacci
 - decrease-key... O(1) in avg. case

THEORY
Marti Bolivar: Scene Recognition
- Log-polar mapping ~ focus on center of img.
- LSH to find features, similarity, newness

IMPLEMENTATION