External memory I/O Disk Access Model — two-level memory hierarchy:

- charge mainly for memory transfers: blocks read/written between cache & disk
- any algorithm with running time \(T(N) \) uses \(\leq T(N) \) memory transfers
- when can we use fewer? (still \(T(N) \) time)

[Aggarwal & Vitter—CACM 1988]
Basic results in external memory:

1. Scanning: $O(\frac{N}{B})$ to read/write N words in order

2. Search trees:
 - B-trees with branching factor $O(B)$
 - support insert, delete, (predecessor) search
 - $O(\log_{B+1} N)$ memory transfers
 - $O(\log N)$ time in comparison model
 - this is optimal for search in comparison model:
 - where query fits among N items requires
 \[\log(N + 1) \] bits of information
 - each block read reveals where query fits among B items \(\Rightarrow \leq \log(B+1) \) bits of information
 - \(\Rightarrow \text{need} \geq \frac{\log(N+1)}{\log(B+1)} \) memory transfers
 - also optimal in "block-probe model" if $B \geq w$ [Lecture 15]

3. Sorting: $O(\frac{N}{B} \log_{MB} \frac{N}{B})$ memory transfers
 \(\Rightarrow \geq B \times \) faster than B-tree sort!
 - $\Omega(\text{ditto})$ in comparison model

4. Permutation: $O(\min(\frac{N}{B} \log_{MB} \frac{N}{B}, \frac{N}{3}))$
 - physical execution $\Omega(\text{ditto})$ in "indivisible model" —
 - can't pack pieces of input words into word

4. Buffer tree: $O(\frac{1}{B} \log_{MB} \frac{N}{B})$ amortized memory transfers
 - for delayed queries / batched updates
 - & instant delete-min \Rightarrow priority queues
Cache-oblivious model [Frigo, Leiserson, Prokop, Ramachandran—FOCS 1999; Prokop—MEng. 1999]

- like external-memory model
- but algorithm doesn’t know B or M (!)
- automatic block transfers triggered by word access with offline optimal block replacement
 - FIFO, LRU, or any conservative replace strategy is 2-competitive given cache of 2x size
 - dropping M ≥ M/2 doesn’t affect bounds like

Cool:
- clean model: algorithm just like RAM alg.
- adapts to changing B (disk tracks)
 - informally...
- & M (competing processes)
- adapts to all levels of multilevel memory hierarchy each with own B&M

- often possible!
Basic cache-oblivious results:

1. Scanning: same algorithm & bound
 ① "B-tree": insert, delete, & search
 in $O(\log_{B+1} N)$ memory transfers
 [Bender, Demaine, Farach-Colton – FOCS 2000/STOC 2001;
 Bender, Duan, Iacono, Wu – SODA 2002;
 Brodal, Fagerberg, Jacob – SODA 2002]
 – best constant is $\leq e$, not 1
 [Bender, Brodal, Fagerberg, Ge, He, Hu, Iacono, López-Ortiz – FOCS 2003]

2. Sorting: $O\left(\frac{N}{B} \log_{MB} \frac{N}{B}\right)$ memory transfers
 – uses tall-cache assumption: $M = \Omega(B^{1+\varepsilon})$
 – impossible otherwise
 [Brodal & Fagerberg – STOC 2003]

3. Permuting: min is impossible
 [Brodal & Fagerberg – same]

4. Priority queue: $O\left(\frac{1}{B} \log_{MB} \frac{N}{B}\right)$ amortized mem. transfers
 (also uses tall-cache assumption)
 [Arge, Bender, Demaine, Holland-Minkley, Munro – STOC/SICOMP 2002;
 Brodal & Fagerberg – ISAAC 2002]
Cache-oblivious binary search/static search trees:
van Emde Boas layout

- store \(N \) elements in order in \(N \)-node complete BST
- carve tree at middle level of edges
 \(\Rightarrow \) one top piece, \(\approx \sqrt{N} \) bottom pieces, each size \(\approx \sqrt{N} \)

- recursively lay out pieces & concatenate
 e.g.

\[\begin{align*}
\log N & \quad \frac{\log N}{2} \\
\frac{\log N}{2} & \quad \frac{\log N}{2}
\end{align*} \]
Analysis of van Emde Boas layout:
- consider level of detail (refinement)

straddling B:

- cutting height in half until $\leq \log B \rightarrow$ pieces

\Rightarrow pieces have height between $\frac{1}{2} \log B$ & $\log B$

($\&$ size between \sqrt{B} & B)

- # pieces visited on root-to-leaf path $\leq \frac{\log N}{\frac{1}{2} \log B}$

(sloppy on $B+1$ issue)

- each piece stores $\leq B$ elements consecutively

\Rightarrow occupies ≤ 2 blocks (depending on alignment)

\Rightarrow # memory transfers $\leq 4 \log_B N$

(assuming $M \geq 2B$)

Generalizations:
- height not a power of 2
- node degrees ≥ 2 & $O(1)$
Cache-oblivious B-trees, as in [Bender, Duan, Iacono, Wu - SODA 2002]

1. ordered file maintenance:
 - store N elements in specified order in array of size $O(N)$ (allow gaps)
 - updates: insert element between two specified / delete element by moving elements in array interval of $O(\log^2 N)$ amortized
 - black box to be filled [Lecture 20]

2. build static search tree on top:

3. operations:
 - search looks at left child’s key to decide direction
 - insert(x):
 - search(x) finds predecessor/successor
 - insert x in between in ordered file
 - update values in leaves corresp. to changed cells & propagate changes up tree, in postorder traversal
 - delete(x) similar
4. **update analysis**: if K cells change in ordered file then $O\left(\frac{K}{B} + \log_B N\right)$ mem. transf.
 - look at level of detail straddling B
 - look at bottom two levels:

 \[\begin{array}{c}
 \begin{array}{c}
 \begin{array}{c}
 >B \\
 \downarrow \\
 \leq B \\
 \downarrow \\
 \leq B
 \end{array}
 \end{array}
 \begin{array}{c}
 \begin{array}{c}
 >B \\
 \downarrow \\
 \leq B \\
 \downarrow \\
 \leq B
 \end{array}
 \end{array}
 \end{array} \]

 - within chunk of $>B$, jumping between ≤ 2 subchunks of $\leq B$ \(\Rightarrow \) assume $M \geq 2B$
 \(\Rightarrow O(\text{chunk}/B) \) memory transfers per chunk
 \(\Rightarrow O\left(\frac{K}{B}\right) \) memory transfers in bottom two levels
 - # nodes above these two levels $\leq \frac{K}{B} + \log_B N$

 \(\Rightarrow O(\frac{K}{B} + \log_B N) \) total memory transfers

So far: search in $O(\log_{B+1} N)$
update in $O(\log_{B+1} N + \frac{\log^2 N}{B})$ amortized

suboptimal if $B=O(\log N \log \log N)$
indirection:
- cluster elements into $\Theta\left(\frac{N}{\log N}\right)$ groups of $\Theta(\log N)$
- use previous structure on \min(each cluster)

- update cluster by complete rewrite ~ $O\left(\frac{\log N}{B}\right)$
- keep cluster between 25% & 100% full
- split/merge & split when necessary

\[\Omega(\log N)\] updates to charge to

\[\Rightarrow\] update in top structure
only every \[\Omega(\log N)\] updates

\[\Rightarrow\] amortized update cost = $O\left(\frac{\log N}{B}\right)$
plus search cost

Conclusion: $O\left(\log_{B+1} N\right)$ insert, delete, search